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Abstract— We have uncovered serious flaws in handling
EEG signals with a decreased rank in implementations of the
common spatial patterns (CSP). The CSP algorithm assumes
covariance matrices of the signal to have full rank. However,
preprocessing techniques, such as artifact removal using in-
dependent component analysis, may decrease the rank of the
signal, leading to potential errors in the CSP decomposition.
We inspect what could go wrong when CSP implementations
do not take this into consideration on a binary motor imagery
classification task. We review CSP implementations in open-
source toolboxes for EEG signal analysis (FieldTrip, BBCI
Toolbox, BioSig, EEGLAB, BCILAB, and MNE). We show
that unprotected implementations decreased mean classification
accuracy by up to 32%, with spatial filters resulting in complex
numbers, for which corresponding spatial patterns do not have
a clear interpretation. We encourage researchers to check their
implementations and analysis pipelines.

I. INTRODUCTION

The common spatial patterns (CSP) algorithm [1], [2] is a
popular supervised decomposition method for the EEG signal
analysis which is used to distinguish between two classes
(conditions). It finds spatial filters that maximize the signal
variance for one class, while simultaneously minimizing the
signal variance for the opposite class. Derivations of CSP
assume that two covariance matrices of two classes have full
rank. However, preprocessing techniques may decrease the
rank of the signal. We highlight this issue using independent
component analysis (ICA) for artifact removal [3], [4]. We
focus on ICA in this paper but our message applies for any
technique with this feature.

A general solution has been shown in the literature [5].
Nevertheless, several studies using ICA for artifact removal
followed by CSP in the original channel space struggle with
this issue and often walk around the problem. For instance,
work reported in [6] computed CSP on ICs to avoid the issue,
while work in [7] used a preprocessing transformation to
obtain a full rank matrix. On the other hand, many studies use
the same pipeline without mentioning the issue. We highlight
this issue here because in many cases it is unclear how other
authors have solved this issue.

In this paper, we show what could happen when CSP
implementations do not take this issue into consideration on a
binary motor imagery classification task of EEG trials from
the BCI competition III dataset IVa [8]. Additionally, we
review implementations in open-source toolboxes for EEG
signal analysis.

1Brain-Computer Interfacing and Neural Engineering Laboratory, School
of Computer Science and Electronic Engineering, University of Essex, UK.
Email: {milan.rybar, i.daly, rpoli}@essex.ac.uk

II. COMMON SPATIAL PATTERNS
Here, we review the CSP algorithm and its two main

implementation approaches. We assume that the EEG is
already band-pass filtered and centered. Let Xi ∈ RC×T be
the EEG signal of trial i where C is the number of channels
and T is the number of samples per trial. We compute the
spatial covariance R1 ∈ RC×C by averaging over trials of
class 1:

R1 =
1

|I1|
∑
i∈I1

XiX
T
i

tr(XiXT
i )

(1)

where I1 is the set of indices corresponding to trials belong-
ing to class 1, |I1| denotes the size of the set I1, and tr is the
trace of a matrix, and spatial covariance R2 equivalently for
class 2. In the following derivations of CSP, we assume that
R1 and R2 have full rank (i.e, rank(R1) = rank(R2) = C).

The goal of CSP is to find a decomposition matrix W ∈
RC×C that projects the signal x(t) ∈ RC in the original
channel space to xCSP(t) ∈ RC as follows:

xCSP(t) = WTx(t) (2)

with the following properties:

WTR1W = D1 (3)

WTR2W = D2 (4)

and scaling such that

D1 +D2 = IC (5)

where IC ∈ RC×C is the identity matrix. In other words,
R1 and R2 share the same eigenvectors and the sum of the
corresponding eigenvalues is always 1. The eigenvector with
the largest eigenvalue for class 1 has the smallest eigenvalue
for class 2 and vice-versa. Columns of W are spatial filters
while columns of a matrix A = (WT )−1 represent spatial
patterns.

A. Geometric approach

We factorize the composite spatial covariance R1+R2 as

R1 +R2 = EFET (6)

where E is the orthogonal matrix of eigenvectors (in
columns) and F is the diagonal matrix of their corresponding
eigenvalues. We define the whitening transformation matrix
U as

U = F
−1/2ET (7)

and whiten matrix R1

S1 = UR1U
T . (8)



We factorize matrix S1 as

S1 = PD1P
T (9)

where P is the orthogonal matrix of eigenvectors and D1 is
the diagonal matrix of their corresponding eigenvalues. We
define the decomposition matrix WT as

WT = PTU. (10)

Then this W satisfies (3) and also (4) using (5).

B. Generalized eigenvalue problem

We can directly solve W by getting WT from (5) [5] and
by inserting this into (3) we get

R1W = D1(R1 +R2)W, (11)

which is an equation of the generalized eigenvalue problem.

C. Covariance matrices without full rank

If the covariance matrices R1 and R2 do not have full
rank, the above CSP derivations do not hold. Putting aside
mathematical incorrectness, what could go wrong in their
direct implementations?

In the geometric approach, the first eigendecomposition in
(6) may have some zero eigenvalues. In the case of using ICA
for artifact removal, the number of zero eigenvalues equals
the number of removed ICs. The whitening transformation U
in (7) is undefined due to division by zero. We can remove
dimensions with zero eigenvalues at this point and the rest
would work. This is similar to dimensionality reduction by
principal component analysis (PCA) before CSP.

In the generalized eigenvalue problem approach, the gen-
eralized eigendecomposition in (11) may have a complex
solution. The complex spatial filters and their corresponding
complex spatial patterns do not have a clear interpretation.

In both cases, the EEG should be first projected into a
space with the number of dimensions equal to the rank of
the EEG before CSP decomposition. We use PCA in this
paper, see [5] for a general solution and [2] for the difference
of CSP solution on spatially filtered data. The covariance
matrices will have full rank in this space. Note that to
compute spatial patterns on the original EEG channels, we
must first multiply WT with the PCA transformation matrix
before the inversion.

III. METHODS

A. Evaluation

We evaluated CSP implementations on a binary motor
imagery classification task using ICA for artifact removal
in a preprocessing step. We chose this pipeline because
it is commonly used and the complex number problem is
hidden by the classifier. We used public dataset IVa from the
BCI competition III [8]. The single-trial EEG signals were
recorded from five healthy participants during imagination of
right hand and right foot movement without feedback (140
trials per class), see [8] for more details.

First, EEG signals were preprocessed by removing ar-
tifacts. EEG signals were FIR band-pass filtered between

1-40 Hz to remove slow drifts in the signal and high-
frequency noise. For each participant, ICA (FastICA) was
trained on all windows 0-4.5 s after the task onset. Artifactual
components were identified by thresholding peak amplitudes
of the EEG time series [9], [10]. A scalp projection of each
IC was thresholded to ±100 µV and peak-to-peak differences
between maximum and minimum amplitudes in each window
and channel were thresholded to 60 µV, with ICs exceeding
any criterion marked for removal (35, 32, 37, 63, and 23 ICs
were removed from a total of 118 for the 5 participants).

We adopted the winning solution from the BCI compe-
tition using CSP [11]. EEG signals were FIR band-pass
filtered between 12-14 Hz and trials were extracted from
0.5-4.5 s after the task onset. Additionally, dimensionality
reduction by PCA on all trials was used if it was required
by a particular CSP implementation.

For each CSP implementation, we trained a classifier using
stratified 10-fold cross-validation and measured classification
accuracy from all test folds. CSP was trained and even
numbers of CSP components, columns of W , from 2 to 20
were selected. Components were ordered by sorting their
corresponding eigenvalues in ascending order and the first
k/2 and last k/2 components were selected for a desired k
components. We choose 20 as a maximum because we have
not seen any usage of more CSP components reported. The
winning solution from the BCI competition, we adopted here,
used 2 CSP components. The classifier features were the log-
variance of the selected components [1], [2]. Linear discrim-
inant analysis (LDA) and support-vector machine (SVM),
with the radial basis function kernel and the regularization
parameter C = 1, were used as classifiers.

B. Implementations

In Python, there are two eigendecomposition methods, for
the geometric approach, eig and eigh in the numpy and scipy
packages. Implementations in both packages have the same
behavior. The eigh is a specialized method for a real symmet-
ric matrix, which always produces a real solution, while eig
is for a general matrix. Nevertheless, eigh does not check this
assumption and only uses the upper or lower triangular part.
Similarly, two generalized eigendecomposition methods eig
and eigh are implemented in the scipy package with the same
logic as above. The eigh method raises an exception when
the second matrix, R1+R2 in (11) in our case, is not definite
positive. We will refer to the used method in parentheses. In
Matlab, there is only one method eig for everything.

We tested CSP implementations in Python 3.6 and Matlab
R2018b Update 4, both 64-bit, with all the above permuta-
tions. The classification pipeline was implemented in Python
and the only difference was a particular CSP implementation
that ran in its required environment, directly Python or
Matlab in a subprocess. 1 In the geometric approach, the
same eigendecomposition method is used for both eigende-
compositions in (6) and (9), and with and without remov-
ing dimensions during the whitening step with eigenvalues

1Source code for the classification pipeline with all CSP implementations
is available at https://github.com/milan-rybar/csp_evaluation.
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Fig. 1. Mean classification accuracy over all test folds from cross-validation (10) and all participants (5) for different CSP implementations. Unprotected
CSP implementations are shown with dashed lines, protected with solid lines, and external implementations with dotted lines. Error bars are 95% confidence
intervals. Points for a particular number of CSP components are offset on the X axis for better visibility. Intervals of numbers of CSP components with
asterisks represent statistical difference between our CSP implementations for the particular number of CSP components by Friedman test where **** is
p < 0.0001, *** is p < 0.001, and ** is p < 0.01. ‘PCA→’ denotes dimensionality reduction by PCA before the CSP algorithm.

smaller than 10−14 after (6). All these possibilities are used
with and without dimensionality reduction by PCA before
CSP. We refer to the CSP implementation with the correct
mathematical background ‘protected’ CSP and otherwise
refer to CSP as ‘unprotected’.

C. EEG Toolboxes

We review CSP implementations in popular open-source
toolboxes for the EEG analysis in Matlab and Python.

1) FieldTrip: FieldTrip (v. 20191025, October 2019) [12]
for Matlab implements a geometric approach but uses singu-
lar value decomposition instead of eigenvalue decomposition.
During the whitening step, it removes dimensions with
eigenvalues of absolute value smaller than 10−14.

2) BBCI Toolbox: BBCI Toolbox (commit a30ce0bc8d,
March 2019) [13] for Matlab implements a geometric ap-
proach. During the whitening step, it keeps dimensions with
eigenvalues larger than the fraction 10−10 of the largest
eigenvalue. It shows a warning of this dimensionality re-
duction when it is applied.

3) BioSig: BioSig (v. 3.6.0, April 2019) [14] for Matlab
implements both approaches. Both of them are unprotected.
The implementation always returns only four spatial filters,
two per class, thus we excluded it for our evaluation.

4) EEGLAB, BCILAB: EEGlab [15] for Matlab has 2
plugins with CSP implementations. CSP plugin (v. 1.1)
implements a geometric approach and BCILAB (v. 1.1) [16]
solves a generalized eigenvalue problem. Both of them are
unprotected. Both implementations are difficult to adapt for
our programmatic evaluation on given trials outside their
desired processing pipelines without taking the code outside,
thus we excluded them for our evaluation.

5) MNE: MNE (v. 0.17.2, April 2019) [17] for Python
solves a generalized eigenvalue problem. It uses the eigh

method for real symmetric matrices, which raises an excep-
tion when the covariance matrix R1 + R2 in (11) is not
definite positive.

IV. RESULTS

We mainly compare our CSP implementations because we
can guarantee that they differ only in the inspected part.
Other implementations may differ in their definition of the
covariance matrix in (1) and selection of CSP components.
For instance, MNE implements different selection criterion
based on [2]. Their results are provided mainly as a reference.
Two methods are compared by their differences in classifica-
tion accuracies on each test fold from cross-validation (10)
and each participant (5). Using LDA and SVM gave similar
results, thus we decided to report results only for LDA
as a simpler classifier. Figure 1 shows mean classification
accuracies for all tested CSP implementations.

A. Geometric approach

Unprotected Python (eigh) encountered division by zero in
(7) due to zero eigenvalues. On the other hand, unprotected
Python (eig) is a little bit tricky. The eig has a complex
solution in (6) and it depends on the particular data how
“close” complex eigenvalues are to zero, whether it raises
division by zero or not in (7).

Reducing dimensionality during the whitening step (i.e,
removing eigenvectors with zero eigenvalues after (6)) or
dimensionality reduction by PCA before the CSP (or both
together) had equivalent results on the classification pipeline
for any classifier, Python (eig, eigh) and Matlab imple-
mentation. We will group their results together and call
them protected regardless what dimensionality reduction is
used. However, Python (eig) with dimensionality reduction
during the whitening step (without PCA) returned W and



eigenvalues in complex numbers but with zero imaginary
parts. Matlab did not have this issue. Additionally, these
methods also gave equivalent results to protected Python
(eigh) and protected Matlab in the generalized eigenvalue
problem approach.

The difference in classification accuracy between unpro-
tected Python (eig) and protected Python (eig, eigh) or Mat-
lab, which were equal as described above, was statistically
significant when using any number of CSP components
(p < 0.0001, one-sided Wilcoxon signed-rank test with Pratt
modification for zero-differences). The difference decreased
from 32 ± 2.1 (mean ± standard error) for 2 components
to 11.7 ± 1.3 for 20 components. The difference between
unprotected Matlab and protected Matlab was statistically
significant for 2 to 16 components (p < 0.0001), and 18 com-
ponents (p < 0.01). The difference decreased from 29.5±2.2
for 2 components to 9.5 ± 2.7 for 18 components. Both
unprotected Python (eig) and Matlab had complex solutions,
thus the resulting W and eigenvectors were complex.

B. Generalized eigenvalue problem

Unprotected Python (eigh) raised an exception because the
covariance matrix R1 +R2 is not definite positive.

The difference in classification accuracy between unpro-
tected Python (eig), protected Python (eig), and protected
Python (eigh) was statistically significant for 2 to 12 com-
ponents (p < 0.0001, Friedman test), and for 14 components
(p < 0.01). The difference in classification accuracy between
unprotected Python (eig) and protected Python (eigh) or
Matlab, which were equal to protected CSP in geometric
approach as described above, was statistically significant for
2 to 10 components (p < 0.0001, one-sided Wilcoxon test)
and for 12 to 14 components (p < 0.01). The difference
decreased from 22.4±2.2 for 2 components to 3.6±1.4 for 14
components. Similarly, the difference between unprotected
Python (eig) and protected Python (eig) was statistically
significant for 2 to 10 components (p < 0.0001), for 12
components (p < 0.001), and for 14 components (p < 0.01).
The difference decreased from 22.2± 2.2 for 2 components
to 4.2 ± 1.3 for 14 components. The difference between
unprotected Matlab and protected Matlab was statistically
significant for 2 to 6 components (p < 0.0001), 8 compo-
nents (p < 0.01), and less for 10 components (p < 0.05).
The difference decreased from 20.6± 2.4 for 2 components
to 6.7± 2.1 for 8 components.

Unprotected Python (eig) and unprotected Matlab had a
complex solution, thus the resulting W and eigenvectors
were complex. Protected Python with eig and eigh did
not have equivalent results, but they were not statistically
different for any number of CSP components (two-sided
Wilcoxon test). Surprisingly, protected Python (eig) had
complex eigenvalues with zero imaginary parts but a W
with real numbers (before components selection). Further
inspection showed that the difference in their eigenvalues
D1 was always less than 10−12 but their W were different,
not just flipped signs or reverse ordering.

V. CONCLUSION
We showed that unprotected CSP implementations in

Python and Matlab can significantly decrease accuracy on a
binary motor imagery classification task. Our results suggest
that the less CSP components are used the higher the
decrease in classification accuracy between protected and
unprotected CSP implementations. In Python, we strongly
recommend using the eigh method in both CSP implemen-
tation approaches. We encourage researchers to check their
implementations.
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