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ABSTRACT
Open-ended evolution is still an unachieved goal in evolu-
tionary computation. Evolution guided by objective func-
tions can easily be trapped on local optima. Our approach
is inspired by evolutionary paths along stepping stones, as
observed in user behaviors of Picbreeder. We propose a gen-
eral framework, inspiration-triggered search, which tries to
roughly mimic the creative design process of a human be-
ing. Instead of using a fixed objective function, the search
algorithm itself is free to switch between objectives within
certain constraints but inspired by features of the currently
evolved artifacts. The overall optimization task is to gen-
erate complex artifacts that cannot be generated by a di-
rect optimization approach. In contrast to other approaches
that make extensive use of external knowledge (e.g., Inno-
vation Engines), we try to approach the ambitious goal of
virtually bootstrapping a creative process from scratch. The
proposed method is tested in the domain of images, that is
to find complex and aesthetically pleasant images, and is
compared to novelty search.

Categories and Subject Descriptors
I.2.6 [AI]: Learning—Connectionism and neural nets

Keywords
creative process, evolutionary art, non-objective search

1. INTRODUCTION
Getting trapped on local optima is one of the main chal-

lenges of stochastic optimization methods besides the diffi-
culty of designing objective functions that do not bias the
search in an undesired way. Novelty search [8, 9], for ex-
ample, shows that the standard approach based on objec-
tive functions can be replaced by a search for novel behav-
iors. However, then the challenge is to design an appropriate
behavioral distance measure and to limit the search space
usefully [6]. The recently proposed Innovation Engine [13]
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produces an impressive variety and complexity of artifacts
but leverages the classification capabilities of a Deep Neural
Network (DNN) that has absorbed 1.3 million images. One
could argue that the Innovation Engine is a sophisticated
method to make the DNN release information about these
images again. Here, we want to follow the even more ambi-
tious goal of generating a creative process from scratch with
little a priori knowledge. The question, whether it is over-
ambitious to virtually ask a blind and deaf artist to produce
something radically new, is fair but we take the challenge.

In this paper, we propose a novel algorithm called
inspiration-triggered search (ITS) that operates without a
fixed goal and tries to roughly mimic creative processes by
changing the objective function on the fly and by using
evolutionary algorithms. We try to generate complex ar-
tifacts that cannot be generated by a direct optimization
approach. The rationale is to abstract creative processes of
artists, researchers, or just users, for example, interacting
with Picbreeder [18] (a website allowing users to collabora-
tively evolve images using artificial evolution). Picbreeder
users were able to evolve images of particular complexity
that could not be directly re-evolved from scratch using the
desired image as an objective function [23]. We suppose
that users have an abstract target artifact in mind and de-
velop their works towards this goal. However, they are open
to switch to another goal if they feel the opportunity (e.g.,
when eyes of a face remind them of a car’s wheels [20]).
In other words, they are inspired by the currently more in-
teresting or promising alternative compared to their former
goal. We test our approach in the grayscale image genera-
tion domain, that is, we try to find complex and aesthetically
pleasant images. Obviously, we will run into hard problems
of how to score complexity, aesthetics, and beauty which
ultimately is, as we all know, in the eye of the beholder.
Hence, we also propose two simple and practical methods
to test for complexity. Both methods are used for post-
evaluations only and do not bias our search algorithm. We
compare our approach with a standard evolutionary algo-
rithm and novelty search. We find that it is able to compete
with the state of the art.

2. INSPIRATION-TRIGGERED SEARCH
ITS mimics creative processes by changing an objective

function on the fly for stochastic optimization techniques
using little a priori knowledge in the form of predefined fea-
ture functions. ITS is a general framework for stochastic
optimization while here we focus on evolutionary computa-
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Algorithm 1 General framework of ITS
1: procedure Inspiration-triggered search
2: P ← ∅ is population, f ← ∅ is objective function
3:

4: Diversification phase:
5: Diversify population P
6: if inspiration criterion is met then
7: goto Inspiration phase
8: else
9: Simplify objective function f

10: goto Diversification phase
11:

12: Inspiration phase:
13: Create new objective function f using population P
14: goto Optimization phase
15:

16: Optimization phase:
17: Optimization with f and P for at most k iterations
18: if inspiration criterion is met then
19: goto Inspiration phase
20: else if convergence criterion is met then
21: goto Diversification phase

22: goto Optimization phase

tion. ITS has three phases: inspiration phase, optimization
phase, and diversification phase (see Alg. 1).

In the inspiration phase, a new objective function is de-
termined by interesting or promising properties of the cur-
rent population. The optimization phase follows which is
a standard optimization using the current objective func-
tion. If ITS is ‘inspired’ by a certain property in the current
population, which is detected by an ‘inspiration criterion’
every k-th iteration, it switches to the inspiration phase to
modify the objective function accordingly. Otherwise, if the
optimization converges, ITS switches to the diversification
phase to add diversity to the population. ITS diversifies
the population until an interesting property is detected by
the inspiration criterion which triggers the inspiration phase
again. If the criterion is not met after diversifying the popu-
lation, the objective function is reduced in complexity. ITS
starts in the diversification phase to bootstrap an initial pop-
ulation and objective function. ITS can be considered as an
approach towards open-ended automated incremental evo-
lution without a predetermined objective. It starts with a
simple objective and gradually tries to complexify it (some-
times interrupted by an interim simplification phase). In the
following, we describe ITS in the context of our testing do-
main of generating images, which is the application example
that we use in this paper.

2.1 Inspiration by parts of individuals
Next we specify how our algorithm can change its objec-

tive function triggered by features of the current population
to implement the inspiration phase and to usefully increase
the complexity in the population. In Picbreeder and other
examples of interactive evolution the user, possibly an ex-
pert, selects interesting individuals. Such a selection can
sometimes be motivated by interesting parts of individuals
in the population (i.e., interesting regions of images) that
have potential to solve the optimization problem (or just to
satisfy the user’s current objective) once they have been im-
proved. Similarly, a teacher at an art school (i.e., an expert)
may inspire a student by pointing to parts of a painting to fo-
cus on. We call such a focused part ‘window’ denoted by W
(i.e., a region of an image). This approach is applicable to
any domain that can be logically split into parts.

In our approach, the figurative idea of both expert and

student is automated in an algorithm. The expert part
of the algorithm selects areas of interest following prede-
fined criteria and the student part of the algorithm then
tries to improve these areas using independent criteria. To
formalize the concept of an expert, we define ‘views’ and ‘de-
scriptions’. We call a collection of windows a view denoted
by V = {W0,W1, . . . }. A view V represents an expert’s
viewpoint (i.e, regions of an image that have potential to
be improved). For example, we use a view consisting of
windows/regions defined by the detection of contours (later
specified in Sec. 3.3), see Fig. 1. The expert assigns a de-
scription DI dedicated to each individual I of a population.
The expert’s description is a set of views V ∈ DI (for sim-
plicity we allow the notation W ∈ DI). With a description
the expert highlights interesting properties of individual I
via views V and the respective windows W .

The student part of our algorithm selects an objective
function that is composed of a predefined set of feature
functions {F0, . . . , FN} (later specified in detail in Sec. 3.2).
Each is assigned and limited to only a part of an individ-
ual, for example, the ‘symmetry’ feature is computed only
within a region of the image. Using the same concept as
above, an objective function f is defined as a set of views
f = {V0, . . . , VN} which are, in turn, sets of windows W
(for simplicity we allow the notation W ∈ f). Each view Vi
has an assigned feature function Fi. Later we use these
views V ∈ f to optimize their corresponding feature func-
tions within parts of individuals defined by windows W ∈ V ,
while ignoring parts outside of any of these windows. We
use the notation F (W, I) to score an individual I by feature
function F limited to an area defined by a window W .

The student part of our algorithm does not just directly
adopt the areas of interest (windows W ) defined by the ex-
pert’s description DI . Instead the description is used to
inspire the selection of a few windows only. Furthermore,
sometimes it is required to reduce the number of windows
which also requires an appropriate selection mechanism. To
implement that selection process and to connect the expert’s
description DI with the choice of an objective function f we
define the description metric δ(f,DI) → R. It assigns a
score to pairs of objective functions f and descriptions DI
to formalize inspiration. The description metric is based
on two functions: coverage C(f,DI) → R and extension
E(f,DI)→ R which are specified below. It is defined by

δ(f,DI) = C(f,DI)
α · E(f,DI)

β (1)

with parameters α, β ∈ R. These two factors represent the
typical tradeoff of exploitation (coverage) and exploration
(extension). Coverage measures how well the current ob-
jective function f represents the expert description DI (i.e.,
how much of the area the expert points to is covered by win-
dows defined in the objective function). By focusing only on
coverage, the search would mostly preserve what has been
found. Extension measures how much the expert’s descrip-
tion DI could extend the current objective function f . By
focusing only on extension, the search would always try to
add and explore new areas. Obviously, it is important to
find the right balance between exploration and exploitation.

For the implementation of the process of adding and re-
moving windows to and from the objective function, we de-
fine the description metric for our testing domain of generat-
ing images. First, we focus on a particular window WD ∈ DI
and want to estimate the utility of adding it to a particu-
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lar view Vf ∈ f in the objective function f . The exten-
sion e(Vf ,WD) represents how much area in pixels is gained
by extending Vf with WD. We compute the area of the com-
plement between WD and Vf and normalize it by the maxi-
mal area that could be gained (i.e., the complement of Vf of
the whole image) which represents the ratio of gained space.
In addition, we consider the quality of window WD accord-
ing to the respective feature function FVf defined via the
view Vf . We define

e(Vf ,WD) =
area(WD \ Vf )

area(V {
f )

· FVf (WD, I) (2)

with V {
f is the complement of Vf and area gives the size of

the argument in pixels. Windows with bigger e are prefer-
able. Now we extend this definition to extension E(f,DI)
which is the average over all windows WD ∈ DI combined
with all views Vf ∈ f . We define

E(f,DI) =
1

‖DI‖W‖f‖V

∑
WD∈DI

∑
Vf∈f

e(Vf ,WD) (3)

with ‖f‖V gives the total number of views in objective func-
tion f and ‖DI‖W is the total number of windows in descrip-
tion DI . If no view of description DI contains a window, we
define E(f,DI) = 0.

The coverage c(Wf , VD) of a particular window Wf ∈
Vf ∈ f from the objective function f and the view VD ∈ DI
of the expert’s description DI represents how much area
of Wf is preserved by replacing view Vf with view VD in the
objective function f . We compute the area in pixels of the
intersection between Wf and VD and normalize it by the size
of the window Wf which gives the ratio of preserved area.
We also consider the quality of the window Wf according to
the respective feature function FVf for view Vf . We define

c(Wf , VD) =
area(Wf ∩ VD)

area(Wf )
· FVf (Wf , I). (4)

Now we extend this definition to coverage C(f,DI) which is
the average over all windows Wf ∈ f combined with each
view VD ∈ DI . We define

C(f,DI) =
1

‖f‖W‖DI‖V

∑
Wf∈f

∑
VD∈DI

c(Wf , VD) (5)

with ‖DI‖V gives the total number of views in descriptionDI
and ‖f‖W is the total number of windows in objective func-
tion f . If no view of the objective function f contains a
window, we set C(f,DI) = 1.

2.2 Alternating inspiration and diversification
The inspiration criterion is met when the description met-

ric value δ(f,DI) is bigger than a threshold Ic ∈ R for any
individual in the population. The inspiration phase is trig-
gered when the inspiration criterion is met either during the
optimization phase or the diversification phase. Once the
inspiration phase is done, ITS continues with an optimiza-
tion phase. During the inspiration phase, we modify the
current objective function f in the following way. First, we
select the description DI of a particular individual I with
the highest value of description metric δ(f,DI). Second, we
modify the current objective function f by adding a win-
dow WD from description DI to a view Vf ∈ f or by remov-
ing a window from Vf ∈ f . A window is added by randomly

selecting a view-window pair (Vf ,WD) with probability de-
fined by e(Vf ,WD), whereas the window is chosen from the
description WD ∈ DI and the view is chosen from the ob-
jective function Vf ∈ f . That determines two actions in
one: the actual choice of window WD (i.e., a region of the
image) and the choice of view Vf (i.e., the feature function
assigned to that window). Later, the area defined by win-
dow WD is optimized using the respective feature function
of view Vf . We remove a window Wf from the objective
function f with probability 1 − c(Wf , DI) if 1 − c(Wf , DI)
is above a threshold R ∈ R.

The diversification phase is triggered when convergence is
detected during the optimization phase. Once the diversi-
fication phase is done, ITS continues with an optimization
phase. During the diversification phase, we first remove one
window Wf ∈ f . Each window Wf ∈ f is rated by the
average coverage

1

|P | · ‖DI‖V

∑
I∈P

∑
VD∈DI

c(Wf , VD) (6)

where |P | is the size of the population and ‖DI‖V is the
number of views in description DI . We remove the window
with the lowest value. We stay in the diversification phase
and continue to remove windows until either the inspiration
criterion is met or, in the worst case, we keep removing win-
dows until the objective function is ‘empty’. The description
metric value δ is expected to increase when windows are re-
moved because that simplifies the objective function.

We use a linear scalarization with unit weights to deal
with our multi-objective optimization problem. The fitness
score of an individual I, depending on the current objective
function f with respective feature functions FVf for Vf ∈ f ,
is defined by ∑

Vf∈f

∑
Wf∈Vf

FVf (Wf , I). (7)

3. TESTING DOMAIN: IMAGES
We test our approach in the grayscale image generation

domain, that is to find ‘complex’ images and potentially
even aesthetically pleasant images for humans. Many dif-
ferent approaches have been proposed to create interesting
and aesthetically pleasant images (e.g, evolutionary art [15]).
The main challenge is that the objective function is diffi-
cult to define formally because it is subjective. We chose
this domain for two reasons. First, it was used before in
Picbreeder [18] as a metaphor for the stepping stone chal-
lenge in creativity. Second, the problems of crafting an ap-
propriate objective function and the challenge of premature
convergence in the image domain are still similar to more
complex domains such as evolutionary robotics.

3.1 Generating images with evolution
We encode images by compositional pattern producing

networks (CPPN) [19], which are a variation of artificial
neural networks differing in their set of activation functions.
We use a similar setting as in [18, 19] but we only use feed-
forward neural networks. The available CPPN activation
functions are signed versions of sigmoid, Gaussian, sine, and
linear functions. Network inputs are the Cartesian coor-
dinates and the distance from the image’s center for each
pixel, linearly scaled to [−1, 1]. The network’s output x is
transformed by 255|x| and determines the pixel’s brightness.
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Parameter Value Parameter Value

PopulationSize 150 MutateRemSimpleNeuronProb 0.001
DynamicCompatibility True RecurrentProb 0.0
MinSpecies 10 MutateWeightsProb 0.9
MaxSpecies 15 MutateWeightsSevereProb 0.5
YoungAgeTreshold 15 WeightMutationRate 0.75
YoungAgeFitnessBoost 1.1 WeightMutationMaxPower 1.0
SpeciesMaxStagnation 15 WeightReplacementMaxPower 2.0
OldAgeTreshold 35 MaxWeight 8.0
SurvivalRate 0.2 MutateNeuronActivationTypeProb 0.02
CrossoverRate 0.75 DisjointCoeff 2.0
OverallMutationRate 0.25 ExcessCoeff 2.0
InterspeciesCrossoverRate 0.01 WeightDiffCoeff 1.0
MultipointCrossoverRate 0.6 ActivationFunctionDiffCoeff 1.0
RouletteWheelSelection False CompatTreshold 6.0
MutateAddNeuronProb 0.05 MinCompatTreshold 0.2
MutateAddLinkProb 0.04 CompatTresholdModifier 0.3
MutateRemLinkProb 0.04

Table 1: Used parameters of NEAT.

Figure 1: Examples of selected windows based on
detecting contours.

Note, this image representation has in principle infinite res-
olution. We generate images with a resolution of 2562 pixels
and we use the OpenCV library [2] to manipulate images.

We use NEAT [21, 19] to evolve CPPN. Its incremen-
tal complexification, that is incrementally adding new nodes
over generations, is in principle similar to our approach (i.e.,
starting with simple images and complexifying them incre-
mentally). Our implementation is based on MultiNEAT [3],
which is a portable software library implementing NEAT.
Table 1 shows NEAT parameters used in our experiments,
which are based on original NEAT, Picbreeder, other simi-
lar experiments [21, 5], and preliminary experiments. CPPN
starts without hidden nodes and with Gaussian as output ac-
tivation function, which can be later changed by mutations.

3.2 Features
We use measures from the field of computational aesthet-

ics [7, 12] and measures defining sharpness of images [14].
We provide our algorithm with 7 features to choose from.

Global contrast factor (GCF): proposed in [11], computes
contrasts, the average difference between neighboring pixels,
at various resolutions, and uses a perceptual luminance to
build a human-perception-based method. Here, we only use
super-pixels of sizes up to 50 due to the low image resolution.

Relaxed symmetry (RS): proposed in [4], calculates the
difference in intensity of opposing pixels around horizontal,
vertical, and diagonal axis.

Tenengrad (T): focus measure based on the magnitude of
an image gradient, defined as

∑
(i,j)∈I(Gx(i, j)2+Gy(i, j)2),

where Gx and Gy are X and Y image gradients computed
by convolving an image I with Sobel operators [16, 22].

Normalized variance (NV): is defined as the variance di-
vided by the mean of an image [16, 22].

Choppiness: computes the average standard deviation of
pixels over all 5× 5 windows within the image.

Image complexity by JPEG compression: compresses an
image by JPEG compression with a quality setting of 75%
and computes an image complexity defined by Machado and

Cardoso [10] as RMS
CompressionRatio

where RMS is the root
mean square difference between the original and the com-
pressed image. The compression ratio is the ratio between
the original and the compressed image size.

Maximum of absolute Laplacian: defined as maximum of
absolute values of the Laplacian of an image.

3.3 Used configuration of ITS
We use only one view in the expert’s descriptions of images

by detection of contours. The idea is to mimic a behavior
similar to human vision. We detect edges by the Canny
Edge detector and the result is used to find contours using a
functionality provided by the OpenCV library. The window
for the view is defined by an oriented bounding rectangle of
a contour. We consider only windows with an area bigger
than 2000 pixels2 and smaller than a quarter of the image.
In Fig. 1 we give example results of selected windows based
on contour detection.

To diversify the population during the diversification phase,
we apply mutations as implemented in NEAT to each indi-
vidual twice. If the inspiration criterion is not met with the
empty objective function (i.e., no windows in all views) in 10
tries, then NEAT is reset (i.e., ITS starts from scratch).

Here, extension values of the description metric have much
smaller values in comparison with coverage values. Instead
of tweaking parameters α and β, we scale the area of the
complement by function f(x) = 2x

x+ω
where ω is the maxi-

mum value of x. We re-define eq. 2 by

e(Vf ,WD) =
2 area(WD \ Vf )

area(WD \ Vf ) + area(V {
f )
· FVf (WD, I). (8)

This is tailored for the chosen image size and allows a simple
setting of α = 1 and β = 1, which is supposed to be a well
balance between exploitation and exploration.

The objective function is modified by removing a window
followed by adding a new window. Then we reset the cur-
rent information about the best fitness value and the number
of stagnations in NEAT. This way, the new objective func-
tion is not influenced by previous objective functions and
we do not require to normalize fitness across different objec-
tive functions. After a maximal number of 10 iterations of
the optimization (here using NEAT) the inspiration criterion
is checked, which can trigger a transition to the inspiration
phase. The optimization is stopped by the convergence limit
that triggers when there was no improvement for 20 itera-
tions. The only difference between the experiments using
different sets of feature functions are appropriately chosen
inspiration thresholds Ic for the inspiration criterion and
thresholds R for the removal of windows from the objective
function (see Table 2).

3.4 Novelty search
For comparison we use novelty search [8, 9] with random

archive selection of 6 individuals each generation. The be-
havioral distance between images is defined as the Euclidean
distance (in pixel space). The number of nearest neighbors
is k = 15. Novelty search is combined with a fitness function
in order to compare it with ITS, which uses feature func-
tions. The score of an individual is given by the weighted
sum of the normalized novelty and fitness score. Fitness and
novelty have the same weight. This setting is based on [6].
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Complexity test by optimization ITS setting

Set of features Uninspired search ITS Ic R

NV 2×7+5×2 4×5 0.01 0.3
RS 2×7+8×2 3×5 0.01 0.4
GCF 5×3 3×5 0.1 0.4
T 5×3 3×5 0.04 0.4
NV+RS 3×3 3×5 0.04 0.3
NV+RS+GCF 3×3 5 0.04 0
NV+RS+T 3×3 5 0.1 0.5
NV+RS+GCF+T 4×3 5 0.1 0.5

Table 2: Summary of experimental settings. Col-
umn ‘Complexity test’ shows number of chosen im-
ages for complexity test by optimization times a
number of trials (e.g., 5×3 is 5 images, each image
in 3 trials). Column ‘ITS setting’ shows ITS pa-
rameters used in our experiments: the inspiration
threshold Ic, and the removal threshold R.

Original Evolved Evolved Original Evolved Evolved

Figure 2: Examples of images used for the complex-
ity test by optimization. Shown evolved images are
visually the most similar to the original image.

4. RESULTS
Next we want to evaluate ITS and see whether it produces

more complex and favorable images in comparison to a stan-
dard optimization technique, here represented by NEAT and
called ‘uninspired search’ (US) for now, as well as novelty
search using the same set of features. How to define com-
plexity in the image domain is a challenge by itself. A human
being could visually compare generated images, but that is
subjective (see Fig. 5 for a selection of a few images gener-
ated by ITS, more example images for each algorithm and
for all used sets of features and the source code are available
online1). We have developed two different approaches for
our evaluation: a complexity test by optimization and by a
complexity classifier.

4.1 Complexity test by optimization
Our initial idea based on [23] is to test whether a partic-

ular target image can be found by directly optimizing using
NEAT and pixel distance as an objective function. The op-
timization minimizes Euclidean distance in pixel space to
the target image. We define a target image to be complex
if it cannot be found by this approach (we test that with
limited resources and hence cannot exclude that it could be

1http://milanrybar.cz/inspiration-triggered-search/

I II III IV

Figure 3: Idea of splitting the image domain into
4 classes according to complexities. Class I: im-
ages with simple shapes and gradients (e.g., images
at coordinates [2, 3], [1, 4] (row, column) in Fig. 4a).
Class II: images with easily created patterns due
to image representation by CPPN (e.g., images at
[2, 5], [1, 1], [2, 6]). Class III: ‘true complex’ images.
Class IV: images with high spatial frequencies (e.g.,
images at [2, 7], [2, 1], [2, 2], [1, 2]).

[0.995, 0.005] [0.935, 0.065] [0.938, 0.062] [1.000, 0.000] [0.926, 0.074] [0.999, 0.001] [0.997, 0.003]

[0.984, 0.016] [0.804, 0.196] [0.999, 0.001] [0.999, 0.001] [0.951, 0.049] [0.998, 0.002] [0.985, 0.015]

(a) Simple images

[0.273, 0.727] [0.335, 0.665] [0.253, 0.747] [0.103, 0.897] [0.153, 0.847] [0.090, 0.910] [0.454, 0.546]

[0.255, 0.745] [0.491, 0.509] [0.088, 0.912] [0.134, 0.866] [0.118, 0.882] [0.107, 0.893] [0.167, 0.833]

(b) Complex images

Figure 4: Example images from training set for com-
plexity classifier with final complexity classifications
(simplicity and complexity node).

found with more resources). We split the domain of pixel
distances into two ranges for classification purposes based on
our preliminary experiments. If the pixel distance is lower
than 1.5 × 104 in the 600th generation, the image is classi-
fied as simple, otherwise it is classified as complex image. In
Fig. 2 we give a few example results and in Fig. 6 we give
the statistical results of the complexity test by optimization.
The green line indicates the complexity threshold.

For a single image, we take the pixel distance of the best
individual of the last generation of each evolutionary run
(different numbers of tested images and trials were used for
the experiments, see Table 2) which represents the difficulty
to find the image. To compare our approach, we select repre-
sentative images from it and aggregate their results. Images
produced by uninspired search were chosen from the best
individuals of last generations. Images from ITS could be
chosen from any generation. We selected images from ITS
with different settings (Ic and R, see Table 2) from gen-
erations that were considered as important (i.e., when the
objective function was modified or when the optimization
converged). The algorithm with higher values can be con-
sidered to generate more complex images. Table 2 shows the
total number of tested images for each set of features.
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[0.080, 0.920] [0.061, 0.939] [0.068, 0.932] [0.047, 0.953] [0.048, 0.952] [0.068, 0.932] [0.089, 0.911] [0.081, 0.919] [0.047, 0.953] [0.069, 0.931] [0.450, 0.550] [0.053, 0.947]

[0.054, 0.946] [0.090, 0.910] [0.086, 0.914] [0.073, 0.927] [0.048, 0.952] [0.081, 0.919] [0.040, 0.960] [0.042, 0.958] [0.075, 0.925] [0.091, 0.909] [0.097, 0.903] [0.070, 0.930]

[0.086, 0.914] [0.038, 0.962] [0.045, 0.955] [0.073, 0.927] [0.062, 0.938] [0.075, 0.925] [0.087, 0.913] [0.087, 0.913] [0.081, 0.919] [0.049, 0.951] [0.081, 0.919] [0.055, 0.945]

Figure 5: Diversity of images from ITS with their classification by the complexity classifier.

Our experiments revealed that the optimization (NEAT)
is only able to find visually simple images. That is, using
this test of complexity by optimization it is relatively easy to
generate images that will be labeled as complex. For exam-
ple, the images in Fig. 4a at coordinates [1, 6], [2, 3], [2, 4]
(row, column) could be found, but visually simple images
at coordinates [1, 7], [1, 3], [2, 5] were labeled as complex.
However, intuitively and subjectively we would label these
images as simple. Hence, the complexity test by optimiza-
tion is of limited use to implement a thorough distinction
between simple and complex images.

In direct analogy to an idea from the field of cellular au-
tomata [1], one can think of the image space as visualized
in Fig. 3. Following that idea, there would be four classes
of images showing different complexity levels; with rather
simple images in classes I and II, noisy/random images in
class IV, and interesting/complex images in class III. The
complexity test by optimization is possibly only able to dis-
tinguish class I from the rest (II, III, and IV). For example,
images generated by uninspired search used for the com-
plexity test in Fig. 6 from NV and RS belong to the class I,
and from GCF to the class II and IV. However, we would
like to label an image as complex only when it is from the
class III. Hence, we penalize images with high spatial fre-
quencies (class IV) in all experiments containing the fea-
tures T or GCF but only with limited success.

Results are shown in Fig. 6. Table 3 gives the classifica-
tion and statistical comparison. The complexity of images
from uninspired search is biased by the particular feature
function. NV and RS produced simple images, even when
combined. On the contrary, GCF and T produced com-
plex images. When the set of features for uninspired search
contained any of the latter, the images were found to be
complex. Still, these images could be assigned to classes II
and IV. When both algorithms produced images classified
as complex, the statistical comparison is biased by the cho-
sen images of the complexity test. Due to limited resources
ITS was not tested with multiple features using GCF or T.
These images would probably be classified as complex (GCF
and T as single features already gave complex images).

4.2 Complexity classifier
In addition to the complexity test by optimization, we

have also applied standard methods of machine learning to
classify images as simple and complex. First, we created
a data set of 4113 simple and 1343 complex, handpicked
images from our preliminary experiments. We labeled an

image as simple when it contained a simple gradient, blurred
objects (class I and II), high spatial frequencies (class IV),
or when it was easily created by mutations during initial
populations in NEAT (class II). See Fig. 4a for examples.
We labeled an image as complex when it was sharp or it
included nontrivial shapes. See Fig. 4b for examples.

Second, we chose seven features providing addition infor-
mation about an image (see Sec. 3.2). Note that this choice
of features introduces no bias, because only few of them were
used in combination as feature functions in our experiments.
We randomly split the data set into training (75%) and test-
ing data (25%). The mean and the standard deviation of
each feature were used to scale the input values.

We trained a feed-forward neural network with two out-
put nodes (10 nodes in one hidden layer) and a bias by
back-propagation for 50 epochs using the PyBrain [17] li-
brary. One output node is used to classify the image as
simple (simplicity node) and another output node for com-
plex (complexity node). The node with a higher value wins
the classification. The classification accuracy on the test-
ing data is 91.5%. We define ‘complexity difference’ as the
difference between the complexity and the simplicity node.
Images are classified as complex if their classification differ-
ence values are positive and simple if negative.

To compare an algorithm, the complexity difference val-
ues of all individuals from the last generations of all trials
are aggregated. The algorithm with higher values can be
consider as producing more images classified as complex in
the population (i.e., it has a higher probability to generate
an image classified as complex). For the comparison, we use
ITS with parameters shown in Table 2 based on our prelim-
inary experiments. We ran each algorithm with each set of
features for 2000 generations in 30 evolutionary runs.

Note that this unsophisticated technique of selecting im-
ages and aggregating results from the last generation under-
estimates the performance of both ITS and novelty search.
ITS contains different phases and last populations that were
generated by, for example, the diversification phase might
give poor performance. Similarly for novelty search but pos-
sibly with limited impact because it does not have explicit,
different phases of optimization and diversification. The re-
sults shown in Fig. 7 indicate a limited impact for both.
However, if we are able to show that ITS creates more com-
plex images in comparison to uninspired search even with
this handicap, then our approach is useful.

Fig. 7 shows complexity difference values over generations
for each algorithm (see the online material for evolved im-
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Complexity test by optimization Complexity classifier

Set of features Uninsp. s. C. ITS p-value p-value Uninsp. s. C. ITS C. Novelty s. p-value

NV simple < complex < 0.001 < 0.001 -0.312 < 0.418 > -0.002 < 0.001
RS simple < complex < 0.001 < 0.001 0.579 > 0.538 > 0.524 < 0.001
GCF complex > complex < 0.001 0.014 0.465 < 0.458 > -0.043 < 0.001
T complex > complex < 0.001 < 0.001 0.023 < 0.583 > 0.039 < 0.001
NV+RS simple < complex < 0.001 < 0.001 0.007 < 0.582 > 0.484 < 0.001
NV+RS+T complex 5 < 0.001 -0.227 < 0.103 < 0.508 < 0.001
NV+RS+GCF complex 5 < 0.001 0.254 < 0.471 > 0.327 < 0.001
NV+RS+GCF+T complex 5 < 0.001 -0.119 < 0.112 < 0.358 < 0.001

Table 3: Evaluation using complexity test by optimization and the complexity classifier, median of complexity
difference over all runs (bigger is better); results of comparisons (C.) with p-values (Wilcoxon rank sum test);
features: normalized variance (NV), relaxed symmetry (RS), global contrast factor (GCF), Tenengrad (T).
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ages2). Table 3 contains the statistical comparisons. ITS
is significantly better than uninspired search in all but one
tested settings and ITS is significantly better than novelty
search in 6 tested settings while novelty search is better for
2 settings (see Table 3). Similarly to the complexity test
by optimization, the complexity of images from uninspired
search is strongly influenced by the particular feature func-
tion. When a set of features for uninspired search contains
GCF or T, the resulting images are more likely to be clas-
sified as complex. This is probably due to the data set we
have chosen for the classifier which contains many sharp im-
ages. Images created by the features GCF and T are mainly
sharp, hence they are classified as complex. However, they
are typically rather simple according to our own subjective,
visual evaluation.

5. DISCUSSION AND CONCLUSION
We have reported a novel algorithm called inspiration-

triggered search that is allowed to change its objective func-
tion on the fly ‘inspired’ by features found within the evolved
objects. Within the image domain, we have shown that our
approach is able to compete with the state of the art.

For the evaluation of our method we had to approach the
hard problem of quantifying complexity. We have reported
two simple methods to compare the complexity of gener-
ated images in a post-evaluation. Both methods have lim-
itations. First, evolving images that can, in turn, not be
reproduced by trying to directly evolve them (i.e., using an
objective function based on pixel distance to that target im-
age) turned out to be easy to achieve and hence ineffective.
Furthermore, this problem also raises questions about the
efficiency of evolving images using CPPN and NEAT. Sec-
ond, classifying images based on a trained ANN depends
crucially on the training data. That data needs to be la-
beled by a human being who introduces a subjective view.
Despite these weaknesses both methods allowed for an ele-
mentary comparison of the investigated approaches.

Existing approaches besides standard evolutionary algo-
rithms can be categorized as interactive evolution using user
input directly (e.g., Picbreeder [18]), purely novelty-driven
approaches (e.g., novelty search [8]), and exploration-driven
approaches that systematically explore a predefined feature
space (e.g., Innovation Engine [13]). ITS usefully comple-
ments these existing approaches by trying to explore the fea-
ture space on the fly and triggered by features that already
exist in the population possibly only as parts of individuals.

In future research, we plan to investigate ITS in different
domains, to test different conditions that trigger the diversi-
fication and inspiration phases, to investigate more complex
operators to modify the objective function, and to study a
well-defined multi-objective optimization approach.
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