
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Milan Rybář

Inspiration-triggered search: Towards
higher complexities by mimicking

creative processes

Department of Theoretical Computer Science and Mathematical
Logic

Supervisor of the master thesis: Jun.-Prof. Dr. Heiko Hamann

Study programme: Informatics

Specialization: Theoretical Computer Science

Prague 2015

I would like to thank my supervisor Jun.-Prof. Dr. Heiko Hamann for giving me
such a life-time opportunity while I was an exchange student at the University
of Paderborn. I am grateful for his guidance, strong interest in the topic, and
his friendly approach. Additionally, I would like to thank Charles University in
Prague, University of Paderborn, and Erasmus+ programme from the European
union that I could study two unforgettable semesters abroad at the University of
Paderborn in Germany.

I would like to thank Petr Fanta for the shared struggle while working on ours
bachelor and master theses. I would also like to thank Abhishek Ananthram,
Frank Kluthe, and Zahra Nouri for the shared moments while working on this
thesis in a computer pool in Zukunftsmeile 1.

I would also like to express my gratitude to my family who always supported
me during my studies.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague on 31st July 2015 Milan Rybář

Název práce: Inspiration-triggered search: Za vyšš́ımi složitostmi napodobováńım
tv̊urč́ıch proces̊u

Autor: Milan Rybář

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoućı diplomové práce: Jun.-Prof. Dr. Heiko Hamann, Department of Com-
puter Science, University of Paderborn, Německo

Abstrakt: Jeden z hlavńıch problémů stochastických optimalizačńıch metod ze
strojového učeńı je uv́ıznut́ı v lokálńıch optimech. Ćılem této práce je vytvořeńı
optimalizačńı metody inspirované uživateli webové služby Picbreeder, ve které
mohou společně vyv́ıjet obrázky pomoćı umělé evoluce. Hlavńı myšlenkou je,
že jejich chováńı představuje tv̊urč́ı procesy. Představujeme metodu nazvanou
inspiration-triggered search, která napodobuje zmı́něné procesy a využ́ıvá k tomu
libovolnou optimalizačńı techniku. Vyhledáváńı neobsahuje pevně daný ćıl, mı́sto
toho je schopno samo si s určitými omezeńımi definovat vlastńı ćıle. Ćılem opti-
malizace je vytvořeńı komplexńıch výtvor̊u, které nemohou být nalezeny hladovou
a př́ımou optimalizaćı. Navržená metoda je otestována v doméně obrázk̊u, kde
je ćılem nalezeńı komplexńıch a esteticky př́ıjemných obrázk̊u pro člověka, a
porovnána s př́ımou optimalizaćı.

Kĺıčová slova: evolučně výpočetńı techniky, předčasná konvergence, vyhledáváńı
bez ćıle, tv̊urč́ı proces, evolučńı uměńı

Title: Inspiration-triggered search: Towards higher complexities by mimicking
creative processes

Author: Milan Rybář

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Jun.-Prof. Dr. Heiko Hamann, Department of Computer Science,
University of Paderborn, Germany

Abstract: The trap of local optima is one of the main challenges of stochastic
optimization methods from machine learning. The aim of this thesis is to develop
an optimization algorithm that is inspired by users interacting with Picbreeder,
which is an online service that allows users to collaboratively evolve images via
an artificial evolution. The idea is that their behaviours depict creative processes.
We propose a general framework on the top of a common optimization technique
called inspiration-triggered search, which mimics these processes. Instead of a
fixed objective function the search algorithm is free to change the objective within
certain constraints. The overall optimization task is to generate complex artefacts
that cannot be generated by a greedy and direct optimization approach. The
proposed method is tested in the domain of images, that is to find complex
and aesthetically pleasant images for humans, and compared with the direct
optimization.

Keywords: evolutionary computation, premature convergence, non-objective search,
creative process, evolutionary art

Contents

Introduction 3

1 Background and related work 6
1.1 Artificial neural network . 6

1.1.1 Compositional pattern producing network 6
1.2 Evolutionary computation . 6

1.2.1 Evolutionary algorithm . 6
1.2.2 NeuroEvolution of augmenting topologies 7
1.2.3 Interactive evolutionary computation 7
1.2.4 Evolutionary art . 8
1.2.5 Image representation . 8

1.3 Computational aesthetics . 9
1.3.1 Machado & Cardoso . 9
1.3.2 Information entropy . 10
1.3.3 Benford law . 10
1.3.4 Global contrast factor . 11
1.3.5 Relaxed symmetry . 12

1.4 Focus measures . 12
1.4.1 Tenengrad . 13
1.4.2 Normalized variance . 13

1.5 Picbreeder . 13
1.6 Novelty search . 14
1.7 Computational creativity . 14

2 Inspiration-triggered search 15
2.1 Framework of inspiration-triggered search 15

2.1.1 Inspiration . 15
2.1.2 General idea . 16
2.1.3 Algorithm . 16
2.1.4 Properties . 17

2.2 Description-based ITS . 18
2.2.1 General idea . 18
2.2.2 Definition . 19

2.3 Multi-view ITS . 19
2.3.1 General idea . 19
2.3.2 Properties . 21
2.3.3 Definition . 22
2.3.4 Objective function for optimization technique 22
2.3.5 Description metric by coverage and extension 23
2.3.6 Inspire method . 24
2.3.7 Simplify method . 25

2.4 Description metric for images . 26
2.4.1 Extension . 27
2.4.2 Coverage . 28
2.4.3 Summary . 29

1

3 Experimental setting 31
3.1 Image representation . 31
3.2 Underlying optimization technique 33
3.3 Features . 33

3.3.1 Global contrast factor . 34
3.3.2 Relaxed symmetry . 35
3.3.3 Normalized variance . 35
3.3.4 Tenengrad . 35
3.3.5 Choppiness . 35
3.3.6 Image complexity by JPEG compression 36
3.3.7 Maximum of absolute Laplacian 36
3.3.8 Feature as penalty . 37

3.4 Inspiration-triggered search . 37

4 Evaluation 40
4.1 Methods for comparing complexities 40

4.1.1 Complexity test by optimization 40
4.1.2 Complexity classifier . 42

4.2 Visualization of ITS . 45
4.3 Selected runs . 50

4.3.1 Increase of complexity after diversification phase 50
4.3.2 No change of complexity after diversification phase 51
4.3.3 Increase of complexity during diversification phase 51
4.3.4 Importance of objective function to complexity 52
4.3.5 Inability to leave diversification phase 54

4.4 Comparison . 54
4.4.1 Normalized Variance . 56
4.4.2 Relaxed symmetry . 60
4.4.3 Global contrast factor . 64
4.4.4 Tenengrad . 68
4.4.5 NV+RS . 72
4.4.6 NV+RS+T . 77
4.4.7 NV+RS+GCF . 81
4.4.8 NV+RS+GCF+T . 85

4.5 Summary . 89

Conclusion 91

Bibliography 94

2

Introduction

The trap of local optima is one of the main challenges of stochastic optimization
methods from machine learning [2]. They search an optimal solution representing
a goal in a particular domain guided by an objective function. The typical ob-
jective function rewards getting closer to the goal. Nevertheless, the direct path
to the goal may contain local optima. In order to get to the goal, the greedy
search cannot only straightforwardly follow the deceptive objective function. It
must make detours, which is moving away from the goal. Otherwise, the search
may prematurely convergence in suboptimal solutions. One work [20] proposes a
possible explanation of this problem. The objective function serves two different
purposes: it defines the goal and guides the search. Mixing up these two purposes
works well when finding good solutions does not impose large detours that are
not directly identifiable with the objective function. However, recent experiments
showed several tasks in which this kind of objective-based search was especially
ineffective [45, 104].

As a rule of thumb, the more complex a task the more likely the search
can be deceived by local optima. Many techniques have been proposed to extend
existing methods and scale them to more complex tasks. Examples of such general
techniques are simulated annealing, tabu search, guided local search, iterated
local search, and scatter search. Within the field of evolutionary computation [22],
examples of such approaches are techniques based on behavioural diversity [59].
Recent experiments have demonstrated that guiding the search with an objective
function is not the only possibility. For instance, novelty search [43, 45] is not
driven towards any particular goal. Instead it only searches for novel behaviours.
The authors argue that sometimes not looking for the goal in this way leads to
finding the goal more quickly and consistently [93].

Furthermore, an objective function for complex tasks is difficult to craft. For
instance, let us imagine, we want to evolve a neural network that would allow
a mobile robot to avoid obstacles [65]. A straightforward objective function of
minimizing the number of collisions will probably be disappointing. The robot,
that does not move at all, receives the maximum score. If the objective func-
tion is improved to force the robot to move, the robot will probably move in a
circle instead of exploring the environment. As illustrated by this example, a
long refinement process is often required before obtaining an objective function
that unambiguously reflects the target behaviours. This is often achieved by an
incremental approach with a sequence of objective functions, each chosen to build
upon the previous [23, 27]. Yet such incremental training is difficult and requires
intimate domain knowledge and careful oversight.

For a broader view, we can look into nature. Fossils provide many examples
that would have been hard to find using objective-based search. Many traits
of animals and plants have been co-opted for a purpose for which they were not
initially selected [29]. Classic examples are bird feathers, which may initially have
evolved for temperature regulation, and vertebrate bones, which may have been
selected to store phosphates. Similarly, the history of science and technology has
many examples of serendipitous discoveries [73, 31]. For instance, the effects of
penicillin on microbes were first observed in a failed experiment about lysozyme

3

and the concept of heating food by microwaves was discovered when working on
radar tubes.

Our approach

Inspiration for this thesis comes from an uncommon optimization domain. Picbreed-
er [85] is an online service that allows users to collaboratively evolve images via
an artificial evolution. The authors observed that evolved images of particular
complexity could not be directly re-evolved from scratch using the desired im-
age as an objective function [104]. Our hypothesis is that users interacting with
Picbreeder are inspired by initial images, define an objective function, and start
to evolve towards it. However after few generations, the user might be inspired by
the result to switch to another objective function. This process might be repeated
several times, each time with a different objective function. We can illustrate this
behaviour on one particular user reported by the authors of Picbreeder [92]. This
user wanted to evolve an alien face and looked for similar images. After few gen-
erations, the user was surprised by one image which had transformed by random
mutations into an image representing a car. The user found it more interesting
and continued to rather evolve images similar to the car than the alien face. In
this process, users have in advance no clear idea about what the results will be.

Our hypothesis is that the previously described behaviour of the users in-
teracting with Picbreeder depicts a “creative process”. For instance, artists or
researchers might work by a similar process. The artist may have an initial vi-
sion or can start from scratch to see where it leads. Also, the researcher usually
begins with an initial thought or an inspiration. It can be considered as an ob-
jective function. They develop their works towards their visions. After some
time, they might be inspired by the result, which surpasses the original vision,
and they change their goals and visions. In other words, they change their ob-
jective functions. Their results might represent something they would not have
thought about before or the results might remotely differ from the previous or
initial vision. This change might occur several times during the process.

In this thesis, we introduce a general framework on the top of a common
optimization technique called inspiration-triggered search (ITS). It mimics the
described behaviour, which we call a creative process, and produces “complex”
solutions. We introduce one general instance of ITS and its concrete implemen-
tation for our testing domain. We test our approach in the domain of images,
that is to find “complex” and aesthetically pleasant images for humans.

How to define a complex image is a difficult problem by itself. We use two dif-
ferent approaches for our evaluation. Firstly, we define that an image is complex
when it cannot be found by the used optimization technique using the image as
the objective function. However, we will show that even visually simple images
are not able to be found by this approach. Secondly, we use machine learning
methods to train a classifier to distinguish “simple” and “complex” images.

Many different approaches have been proposed to create interesting and aes-
thetically pleasant images for humans. The main problem is that the objective
function is difficult to define formally because it is subjective. Examples of such
approaches are evolutionary art [76], in which an artificial evolution is used to
create works of art, and recent works [106, 97, 53, 107] based on visualizations of

4

deep neural networks or convolutional deep neural networks. We achieve inter-
esting and aesthetically pleasant images by a choice of features that are used by
the optimization technique.

At the first glance, our testing domain may seem to have only few similarities
with more real-case usage of optimization techniques. Nevertheless, local opti-
ma and subjectivity are often shared by complex domains such as evolutionary
robotics [65]. For instance, let us assume, the previously mentioned example of
evolving a neural network that would allow a mobile robot to avoid obstacles.
Firstly, it is hard to evolve the desired behaviour due to many local optima. Ad-
ditionally, without an incremental approach, objective functions often introduce
the bootstrap problem: if all individuals from the first randomly generated pop-
ulation perform equally poorly, the evolutionary process will not generate any
interesting solution. Secondly, behaviours with the same score may be subjec-
tively completely different. For instance, a robot exploring the environment will
be labelled as more “intelligent” by humans in comparison with a robot moving
in a circle, even though both of them may have the same score.

The thesis is dived into four chapters. The first chapter reviews foundational
and related work for this thesis. In the second chapter, we propose an inspiration-
triggered search. Firstly, we introduce it as a general framework. Then, we intro-
duce its general instances by including several general ideas. Lastly, we present
the concrete definition for our testing domain of images. The third chapter de-
scribes settings of our experiments. In the last chapter, we evaluate the proposed
method.

5

1. Background and related work

This chapter reviews foundational and related work for this thesis. Firstly, we
review artificial neural networks and compositional pattern producing networks
that are used for our image representation. Secondly, we review techniques from
the field of evolutionary computation that we use as our underlying optimiza-
tion techniques. We briefly introduce interactive evolutionary computation and
evolutionary art that are highly connected with our testing domain of images.
Thirdly, we need to choose features for the underlying optimization technique,
therefore we have a look what has been used in evolutionary art and we describe
several measures from computational aesthetics and focus measures. Then, we
briefly present Picbreeder which was the source of our initial inspiration. Lastly,
we present other approaches dealing with the same topic as this thesis such as
novelty search and computational creativity.

1.1 Artificial neural network

Artificial neural networks (ANNs) [2] are a family of computational models in-
spired by biological neural networks representing a system of interconnected nodes
called neurons. For more information, please see the current literature.

1.1.1 Compositional pattern producing network

Compositional pattern producing networks (CPPNs) introduced by Stanley [90,
89] are a variation of artificial neural networks that differ in their set of activation
functions. The choice of functions for the canonical set can be biased towards
specific types of patterns and regularities.

According to Stanley, CPPN is an abstraction of natural development. Pat-
terns in nature can be described at a high level as compositions of functions,
wherein each function in the composition represents a stage in development. Thus
the indirect CPPN encoding can compactly encode patterns with regularities such
as symmetry, repetition, and repetition with variation.

CPPNs have shown promise in a variety of different domains including the
evolution of two-dimensional images [85], three-dimensional objects [14], musi-
cal compositions [35], dancing avatars [21], robot morphologies [71, 12, 3], and
connectivity patterns of complex neural networks [91].

1.2 Evolutionary computation

Evolutionary computation [22] is a collective name for a range of population-based
metaheuristic optimization algorithms based on principles of biological evolution,
such as natural selection and genetic inheritance.

1.2.1 Evolutionary algorithm

Evolutionary algorithms (EAs) [22] are based on adopting Darwinian principles
and involve techniques implementing mechanisms inspired by biological evolution

6

such as reproduction, mutation, recombination, and natural selection. Although
EAs can be divided into a number of branches, they all follow the same general
framework. A cycle of evaluation, selection, and mutation is applied repeatedly
to shape a population with respect to a fitness function. For instance, genetic
algorithm approaches generally optimize strings of numbers that represent param-
eters in a problem domain [25]; genetic programming techniques evolve computer
programs as trees of operators and operands to solve computational tasks [40];
and neuroevolution techniques evolve the structure and connection weights for
artificial neural networks to perform control and decision-making tasks [28, 94].

1.2.2 NeuroEvolution of augmenting topologies

NeuroEvolution of Augmenting Topologies (NEAT) [94, 95] is a neuroevolution
technique to evolve artificial neural network topologies along with weights. It is
based on applying three key techniques: tracking genes with historical markings
to allow crossover among topologies, protecting structural innovation using spe-
ciation, and incrementally growing from minimal structure. Although NEAT was
originally introduced to evolve ANNs, it is sufficiently general to evolve CPPNs.
The variation called CPPN-NEAT was introduced in [90].

1.2.3 Interactive evolutionary computation

Interactive evolutionary computation (IEC) [98] is well-suited for domains where
a fitness function is subjective or difficult to define formally. For example, tradi-
tional evolutionary algorithms would struggle to determine whether an image is
“attractive” or not, yet humans can easily perform such evaluations.

In single-user interactive evolution, the user is presented with a set of alter-
natives generated by the system. This initial population is then evolved over
generations. In each generation, the user selects the most promising designs, that
are then mated and mutated to create the next generation. In effect, IEC assists
the user in exploring a potentially vast design space.

A prominent application of IEC is evolutionary art, in which the artificial
evolution is used to create works of art. It has been successfully applied in a wide
variety of application domains including the evolution of images [87, 88, 100, 77,
50], music [61, 9, 37], three-dimensional models [64, 36], dancing avatars [21],
particle systems [32], and movies [101].

While IEC is a powerful approach for helping users to generate digital arte-
facts, results are often limited by human fatigue [98]. According to Takagi [98],
a normal IEC process should only require 10 to 20 generations from the user.
However, it is challenging to produce notable artefacts within this limit.

Many researchers have tried to get rid of human beings from IEC or at least
partially simulate them. One approach is to use machine leaning techniques to
learn the user preferences. For instance, a work by Johanson and Poli [37] learns
a neural network when the user is interacting with the system. The trained neural
network is afterwards used as a fitness function. Other approach is to formalize
user preferences. For instance, computational aesthetics (see 1.3) try to describe
the beauty in domains of human creative expression. A study by Lehman and
Stanley [46] uses impressiveness defined by rarity and re-creation effort, that is

7

the difficulty for the benchmark optimizer to re-create an observed property of
an evolved artefact. A recent study by Woolley and Stanley [105] uses novelty
search (see 1.6) to get rid of a fitness function.

1.2.4 Evolutionary art

Evolutionary art is a research field where methods from evolutionary computation
are used to create works of art. For a good overview of this field, see [76, 8].

The creation of fitness functions for the evaluation of art is regarded as one of
the open problems in evolutionary art [57]. Within the field of evolutionary art,
there are two main approaches to assign a fitness value to an artefact: to dele-
gate fitness assignment to a human being [87, 77] or to use an automatic fitness
assignment [5, 19]. To overcome the disadvantages and also combine the advan-
tages of both approaches, Machado et al. propose partially interactive evolution
[51], where the human user’s contribution is much reduced compared to the fully
interactive approach, but the human still guides the evolution. Substantial efforts
in evolutionary art research have been dedicated to studying and devising good
aesthetic measures. A study by Li and Hu [47] suggests using machine learning
techniques to learn the differences between aesthetic and non-aesthetic images.

Johnson [38] presents a taxonomy of usage of a fitness function in evolution-
ary art and music based on fitness scope and fitness basis. The fitness scope, a
classification of what the fitness is applied to, is divided into three classes: set
of works where each member of the population consists of a collection of individ-
ual artworks and the fitness measure is applied to that collection; each member
represents the single artwork and the fitness is applied to a single work; and evo-
lutionary process as artwork is where the fitness evaluation is part of a process
which is viewed in some fashion as the work itself and therefore the work as such
is not being rated by the fitness measure. The fitness basis, a classification of
how the fitness is evaluated, is divided into five classes: aesthetic measure (a fixed
function measuring the quality of the solution); human interaction; the use of a
corpus of material or guiding example; an endogenous or implicit fitness derived
from interactions between agents; and the use of a population of critics that learn
alongside the evolutionary process.

1.2.5 Image representation

In the field of evolutionary computation, there are many possible representations
of genotypes, such as strings of binary digits, sets of procedural parameters,
or symbolic expressions. The widely-used representations for images are tree
structures and artificial neural networks. It is worth noting that the resulting
images from these representations have possible infinite resolution.

Artificial neural network

The image is described by a function encoded in a form of an artificial neural net-
work. The basic network’s topology to create a black-and-white two-dimensional
image contains at least two input nodes and one output node. Network’s inputs
represents X and Y coordinates of the pixel and the network’s output value is a
value for the pixel at position (X, Y). In order to create the image, we iterate

8

through each pixel at the image. We set coordinates of the pixel as inputs to the
network, evaluate the network, and use the network’s output as the value for this
pixel. To create coloured images, the network usually contains three output nodes
to create the pixel value in a colour space, for instance, such as RGB (red, green,
blue) or HSB (hue, saturation, brightness). Restrictions of a network’s topology
and its activation functions create biased choice towards resulting images.

For instance, Picbreeder (see 1.5) creates coloured images represented by
CPPNs. The network has three input nodes: X and Y coordinates of the pixel,
and the distance from the centre of the image. A colour is represented in the HSB
colour space, therefore the network has three output nodes. CPPNs include co-
sine, sine, Gaussian, identity, and sigmoid functions to represent the images. The
network’s topology is unconstrained and can represent any possible relationships
(including recurrent).

Tree structure

The image is described by a formula or a computer program encoded in a form of
a tree structure. This representation often relies on genetic programming. As in
the previous representation, the choice of a function biases the resulting images.
These functions can vary from basic mathematical functions, such as addition,
division, modulo, sine, and cosine, to more complex functions, such as to blur an
image or to create fractals. Examples of such approaches are [87, 77, 50].

1.3 Computational aesthetics

“Computational aesthetics is the research of computational methods that can
make applicable aesthetic decisions in a similar fashion as humans can” [62].
In other words, it tries to describe the beauty in domains of human creative
expression such as music, visual art, poetry, and others. For good overview of
this field, see [30, 62].

Birkhoff [10] was the first to formalize quantitative theory of aesthetics. He
proposed the aesthetic measure M defined as

M =
Order

Complexity
(1.1)

It represents the perceptual reward for the effort of focusing attention on some-
thing complex but then realizing a certain pleasant harmony. From Birkhoff’s
work, a number of researchers [58, 7] developed information aesthetics based on
information theory. The concepts of order and complexity were formalized from
Shannon’s notion of information [16].

Scha and Bod [81] stated that in spite of the simplicity of these beauty mea-
sures, “if we integrate them with other ideas from perceptual psychology and
computational linguistics, they may in fact constitute a starting point for the
development of more adequate formal models.”

1.3.1 Machado & Cardoso

This measure is based on the aesthetic theory of Machado and Cardoso [49]. The
aesthetic value of an artwork is related to the relation between image complexity

9

(IC) and processing complexity (PC). Images that are visually complex, but are
easily processed have the highest aesthetic value. For an example, the authors
refer to fractal images which are visually complex but can be described by a
simple formula. The aesthetic measure MMC of an image I is defined as

MMC(I) =
IC(I)

PC(I)
(1.2)

The image complexity can be estimated as the effort needed to compress the
image and is defined as

IC(I) =
RMS(I)

CompressionRatio(I)
(1.3)

where RMS is the difference between the original and the compressed image
expressed as the root mean square. The compression ratio is the ratio between
the original and the compressed image size. The authors suggest to use JPEG
compression. The processing complexity can be calculated using fractal image
compression [84].

1.3.2 Information entropy

This measure based on the Shannon entropy [16] is similar to the measure used
in [70]. The measure MIE of an image I is defined as

MIE(I) = −
∑
x∈X

p(x) log(p(x)) (1.4)

where X represents bins of the image brightness histogram with probability dis-
tribution p. For instance, a work [47] uses the histogram with 100 bins.

1.3.3 Benford law

This aesthetic measure is based on Benford law [39, 1]. Benford law (first-digit
law) states that list of numbers obtained from real life source of data, not created
by man, are distributed in a non-uniform way. The leading digit occurs one third
of the time, the second digit occurs 17.6%, etc.

Benford law is used to measure the distribution of brightness of pixels. For
instance, a study [34] calculates the brightness histogram using 9 bins. The
measure MBL of an image I calculated as

MBL(I) =
Dmax −Dtotal

Dmax

(1.5)

represents the difference between the actual histogram and the Benford his-
togram. Dtotal is computed as

Dtotal =
9∑
i=1

(
Himage(i)

N
−Hbenford(i)

)p
(1.6)

where Himage(i) is the number of entries in the brightness histogram bin number
i and N is the total number of pixels in the image. Hbenford(i) is the value from

10

the Benford distribution and it is distributed for 9 bins as follows: 30.1%, 17.6%,
12.5%, 9.7%, 7.9%, 6.7%, 5.8%, 5.1%, and 4.6%. The maximal difference Dmax

is calculated as (1− 0.301)p + (0.176)p + . . .+ (0.046)p. This study [34] suggests
to use p = 1.

1.3.4 Global contrast factor

The aesthetic measure proposed in [56] for grayscale images computes contrasts,
the average difference between neighbouring pixels, at various resolutions. To
build a human perception based method, the authors rather use a perceptual
luminance than a pixel value. The perceptual luminance L for the original pixel
value k ∈ {0, . . . , 255} is approximated as

L = 100 ·

√(
k

255

)γ
(1.7)

with gamma correction γ = 2.2.
The local contrast ci for pixel i is the average difference in perceptual lumi-

nance between the pixel and four neighbouring pixels. Assuming the image is w
pixels wide, h pixels high, and the image is organized as one-dimensional array
of row-wise sorted pixels, the local contract ci for pixel i is computed as

ci =
|Li − Li−1|+ |Li − Li+1|+ |Li − Li−w|+ |Li − Li+w|

4
(1.8)

For pixels at the edges, only the available neighbouring pixels are taken into
account. The average local contrast C for the current resolution is computed as
the average local contrast over the whole image.

C =
1

w · h

w∗h∑
i=1

ci (1.9)

The image is made smaller by combining a fixed number of pixels into one
super pixel. The super-pixel value is computed as the average of original pixel
values. They use super-pixels of following sizes: 1 (the original image), 2, 4, 8,
16, 25, 50, 100, and 200 resulting in 9 different resolutions.

The measure MGCF for an image I is defined as

MGCF (I) =
9∑
i=1

(wi · Ci) (1.10)

where Ci is the average local contrast for the resolution given by the size of super-
pixel at index i from the previously mentioned set. They experimentally defined
weighting factors wi as

wi = (−0.406385 · i
9

+ 0.334573) · i
9

+ 0.0877526 (1.11)

where i ∈ {1, . . . , 9}.

11

1.3.5 Relaxed symmetry

The aesthetic measure proposed in [33] computes a reflectional symmetry of an
image. The image is divided in four quarters cutting the image in half across the
horizontal and vertical axis. Let us denote A1 as top left quarter of the image,
A2 as top right, A3 as bottom left, and A4 as bottom right quarter of the image.

The horizontal symmetry Sh of the image I represents the average similarity
between left and right half of the image and is defined as

Sh(I) = s(Aleft, Aright) (1.12)

where Aleft = A1+A3, and Aright = A2+A4. The vertical symmetry is calculated
as

Sv(I) = s(Atop, Abottom) (1.13)

where Atop = A1 +A2, and Abottom = A3 +A4. The diagonal symmetry is defined
as

Sd(I) =
s(A1, A4) + s(A2, A3)

2
(1.14)

The similarity between two areas Ai and Aj is defined as

s(Ai, Aj) =
1

w · h

w∑
x=0

h∑
y=0

sim(Ai(x, y), Amj (x, y)) (1.15)

where x and y are the coordinates of the pixel, w is the width, and h is the
height of the area. Amj is the mirrored area of Aj. For horizontal symmetry Aj
is mirrored around the vertical axis, for vertical symmetry Aj is mirrored around
the horizontal axis, and for diagonal symmetry Aj is mirrored around both axes.
The similarity between two opposing pixels is defined as

sim(Ai(x, y), Aj(x, y)) =

{
1 if |I(Ai(x, y))− I(Aj(x, y))| < 0.05

0 otherwise
(1.16)

where I(Ai(x, y)) ∈ [0, 1] is the intensity value of the pixel (x, y) in area Ai.
The relaxed symmetry measure MRS for the image I is defined as

MRS(I) = e
−

(MSS(I)− 0.8)2

0.08

(1.17)

where MSS is the combined symmetry calculated as

MSS(I) =
Sh(I) + Sv(I) + Sh(I)

3
(1.18)

1.4 Focus measures

Another important measure of an image is a sharpness. In literature [42, 48], a
focus measure has a maximum value for the best focused image and it generally
decreases as the defocus increases. For overview of focus measures, please see [68].

12

1.4.1 Tenengrad

Tenengrad focus measure MT [79, 96] for an image I, based on the magnitude of
an image gradient, is defined as

MT (I) =
∑

(i,j)∈I

(
Gx(i, j)

2 +Gy(i, j)
2
)

(1.19)

where Gx and Gy are the X and Y image gradients computed by convolving the
image I with the Sobel operators. They use a kernel size of 3× 3, that means

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗ I (1.20)

Gy =

−1 −2 −1
0 0 0

+1 +2 +1

 ∗ I (1.21)

where ∗ denotes the 2-dimensional convolution operation.

1.4.2 Normalized variance

The normalized variance [79, 96] is defined as the variance divided by the mean
of an image. The measure MNV for an image I is calculated as

MNV (I) =
σ2

µ
(1.22)

where σ is the standard deviation and µ is the mean of image pixel values.

1.5 Picbreeder

Picbreeder [85] is an online service that allows users to collaboratively evolve im-
ages via an artificial evolution. Users can begin evolving from scratch as in typical
interactive evolutionary computation applications or from already published im-
ages by branching, thereby continuing its evolution. The authors observed that
evolved images of particular complexity could not be directly re-evolved from
scratch using the desired image as an objective function [104].

Coloured images are represented by CPPNs (see 1.1.1). The network has three
input nodes: X and Y coordinates of the pixel, and the distance from the centre
of the image. A colour is represented in the HSB colour space, therefore the
network has three output nodes. CPPNs include cosine, sine, Gaussian, identity,
and sigmoid functions to represent the images. These functions were chosen to
capture regularities that appear frequently in nature (e.g. symmetry, repetition,
repetition with variation) without an intentional aesthetic bias. The topology of
network is unconstrained and can represent any possible relationships (including
recurrent). The images are evolved by NEAT (see 1.2.2).

13

1.6 Novelty search

When a fitness function is highly deceptive [26], it may misdirect the search
process towards dead-ends instead of guiding it. Lehman and Stanley [43, 45]
argue that, in these cases at least, it may be useful to get rid of the fitness
function and only search for novel behaviours. They also argue that this radical
departure from objective-based search may be a better abstraction of how natural
evolution continuously “discovers” new lifeforms. They point out that sometimes
not looking for the goal in this way leads to finding the goal more quickly and
consistently. Lehman and Stanley exploited this idea in novelty search [43, 45].
It is an evolutionary process in which solutions are compared according to their
behaviours and ranked according to their novelty with regard to all the behaviours
that have been discovered before.

Novelty search replaces the fitness function with a novelty metric, which is a
user-defined measure of distance between evolved artefacts in a particular domain.
They propose the novelty metric based on the average distance to the k-nearest
neighbours of what the search has previously encountered.

The authors showed that novelty search is an effective algorithm for deceptive
two-dimensional robot maze navigation task and for evolving a neuro-controllers
for bipedal walking. Other authors have confirmed that novelty search is a promis-
ing alternative to objective-based search [72, 41]. Novelty search was also used in
interactive evolutionary computation [105] and open-ended evolution [46]. Open-
ended evolution is defined as “a process in which there is the possibility for an
indefinite increase in complexity” [78]. Lehman and Stanley proposed a modifi-
cation called minimal criteria novelty search [44], in which individuals must meet
domain-dependent criteria to be selected for reproduction. Novelty search can
be combined with the objective-based search thanks to multi-objective EAs: one
objective is the traditional fitness function, the other is the novelty score used in
novelty search [60].

Novelty search raises a new question: in what space do we measure nov-
elty? For instance, a recent work [63] replaces the human-crafted behavioural
distance with a deep neural network that can recognize interesting differences
between phenotypes. Another approach is to formalize interestingness and define
a curiosity-driven search process [66, 83]. Curiosity is the drive to actively ex-
plore the interesting regions in the search space that most improve the model’s
predictions or explanations of what is going on in the world.

1.7 Computational creativity

Computational creativity [15, 54] is a multidisciplinary research located at the
intersection of the fields of artificial intelligence, cognitive psychology, philosophy,
and the arts. It is the study of building software that exhibits behaviour that
would be deemed creative in humans. Such creative software can be used for
autonomous creative tasks, such as inventing mathematical theories, writing po-
ems, painting pictures, and composing music. However, computational creativity
studies also enable better understanding of human creativity and to produce pro-
grams for creative people to use, where the software acts as a creative collaborator
rather than a mere tool.

14

2. Inspiration-triggered search

In this chapter, we propose an inspiration-triggered search (ITS). Firstly, we
introduce ITS as a general framework. Then, we introduce its general instances
by including several general ideas. Lastly, we present a concrete definition for
our testing domain of images. Even though, ITS is a general framework, we
use terminology from the field of evolutionary computation (see 1.2) because our
main focus is on this field.

2.1 Framework of inspiration-triggered search

In this section, we introduce a general framework of inspiration-triggered search
(ITS). Similarly to the field of evolutionary computation, evolutionary algorithm
(see 1.2.1) is a general framework as well. Examples of its instances are evolu-
tionary algorithms, genetic programming, and neuroevolution.

2.1.1 Inspiration

Picbreeder (see 1.5) is an online service to collaboratively create images via an
artificial evolution. The authors observed that users evolved images with par-
ticular complexity that could not be directly re-evolved from scratch using the
desired image as an objective function. Our hypothesis is that users are inspired
by initial images, define an objective function, and start to evolve towards it.
However after few generations, they might be inspired by the results to switch
to another objective function. This process might be repeated several time, each
time with a different objective function. We can illustrate this behaviour on one
particular user reported by the authors of Picbreeder [92]. This user wanted to
evolve an alien face and looked for images similar to it. After few generations, the
user was surprised by one image which had transformed by random mutations
into an image similar to a car. The user found it more interesting and continued
to rather evolve images similar to the car than the alien face. In this process,
users have in advance no clear idea about what the results will be.

Our hypothesis is that the previously described behaviour depicts a “creative
process.” For instance, artists and researchers might work by a similar process.
The artist can have an initial vision or can start from scratch to see where it leads.
Also, the researcher usually begins with an initial thought or an inspiration. It can
be considered as an objective function. They develop their works towards their
visions. After some time, they might be inspired by the result, which surpasses
the original vision, and they change their goals and visions. In other words, they
change their objective functions. The results might represent something they
would not have thought about before or the results might remotely differ from
the previous or the initial vision. This change might occur several times during
the process.

15

2.1.2 General idea

Inspiration-triggered search (ITS) mimics the described behaviour on the top of
a standard optimization technique. One can choose any optimization technique.
It can be population-based or without a population, that is, it operates only
with one individual. Nevertheless, we describe ITS as if it uses a population-
based optimization technique, but the population can of course contain only one
individual.

ITS generalizes the described behaviour into three phases: the inspiration
phase, the optimization phase, and the diversification phase. In the inspiration
phase, the current population is analysed to detect “interesting or promising
features” and a new objective function is defined. In other words, the most “in-
teresting or promising” individuals are used to define the new objective function.
For instance, the reported user from Picbreeder wanted to evolve an alien face.
However, the user visually analysed the population, found a more interesting im-
age representing a car, and defined the new objective function to evolve the car.
The optimization phase represents the standard optimization using the current
objective function. The underlying optimization technique will end if either it
converges or after a pre-defined number of iterations. If ITS is “inspired” by
an individual which has been found, it will define the new objective function by
switching to the inspiration phase. Otherwise, if the optimization technique has
converged, ITS will switch to the diversification phase. The idea of the diver-
sification phase is to add diversity to the population. It is mainly used after
the convergence of the optimization technique. ITS diversifies the population
until something “inspiring” in the population is found. Then, it defines the new
objective function and switches back to the optimization phase.

2.1.3 Algorithm

Inspiration-triggered search starts with a random population and defines an initial
objective function from this population. This can be considered as a special case
of the diversification phase, therefore ITS does not need any initialization phase.
Algorithm 1 shows a pseudo-code of ITS.

During the diversification phase, the diversify method diversifies the popula-
tion until something “inspiring” in the population is found, which is detected by
the inspiration criterion, and then ITS switches to the optimization phase. The
diversify method can change a size of the population. For instance, it might be
useful for the inspiration criterion to create more individuals. The size can later
be changed by the select method, which prepares the population for the under-
lying optimization technique. If the population is diversified and the inspiration
criterion is not met, it could mean that the objective function is too “complex”
and the population does not contain any individual close to this objective func-
tion. The objective function can be simplified by the simplify method.

In the inspiration phase, the inspire method defines the new objective function
from the current population. The following select method prepares the popula-
tion for the optimization technique. For instance, it can choose a subset of the
population or modify it.

In the optimization phase, ITS optimizes the population by the underlying
optimization technique using the current objective function. We have only one

16

Algorithm 1 The general framework of inspiration-triggered search

1: procedure Inspiration-triggered search
2: P ← ∅ . Population
3: f ← ∅ . Objective function
4:

5: diversification: . Diversification phase
6: P ← diversify(P)
7: if inspiration criterion is met then
8: goto inspiration
9: else

10: f ← simplify(f, P)

11: goto diversification
12:

13: inspiration: . Inspiration phase
14: f ← inspire(f, P)
15: P ← select(P)
16: goto optimization
17:

18: optimization: . Optimization phase
19: optimization technique with f and P for at most k iterations
20: if inspiration criterion is met then
21: goto inspiration
22: else if convergence criterion is met then
23: goto diversification

24: goto optimization

requirement for the optimization technique. It must be able to run in a specif-
ic number of iterations denoted by k ∈ N, which depends on the convergence
and the inspiration criterion. Otherwise, one can choose any optimization tech-
nique. The optimization technique will end if either it converges for a pre-defined
number of generations or after k iterations. In other words, the population is
checked for “interesting or promising” individuals every k-th iteration. The in-
spiration criterion is used to detect whether any individual is enough “interesting
or promising” to change the objective function. If the inspiration criterion is met,
ITS will switch to the inspiration phase. Otherwise, the convergence criterion is
used to detect a premature convergence of the optimization technique. If it is
met, ITS will switch to the diversification phase.

2.1.4 Properties

The definition of the objective function, the inspiration criterion, and the inspire
method are main building blocks needed to be defined for ITS. Nevertheless, we
can deduce a few general properties of ITS. Firstly, the current population is
crucial to the search. It would not work if the population was forgotten after a
definition of the objective function and ITS started to optimize from scratch. The
objective function should be defined by the current population. Therefore, the
population contains some individuals that do not perform poorly according to the

17

objective function. This way, the bootstrap problem is not introduced into the
search: if all individuals from the first randomly generated population perform
equally poorly, the evolutionary process will not generate any interesting solution.
Without the current population and with a “complex” objective function, the
search would have to deal with the bootstrap problem and it could prematurely
converge. A different point of view is that ITS is an automated incremental
approach. It can start with a simple objective function and continuously make it
more complex.

ITS operates in cycles that we call creative cycles. A creative cycle contains
the optimization using the current objective function and it can be followed by
the inspiration or the diversification phase resulting in the definition of the new
objective function. The initial diversification phase and the definition of the
initial objective function can be considered as the initial phase. After this initial
phase, ITS runs in creative cycles. One creative cycle can be considered as one
run of the optimization phase, that are lines 18 to 24 in the algorithm 1.

Before introducing concrete definitions, we explain the main idea of ITS for our
domain of images. Proposed instances of ITS will follow an incremental approach.
We try to gradually improve what has been found. We do not want to make a
rapid changes to the objective function. We rather let the search gradually adapt
to the changes. Let us assume, the image contains one circle and the objective
function is somehow defined as a circle in that area. After few generations, a
second circle has appeared in the image during the optimization. We also add
the second circle to the objective function. Again, after few generations, two lines
have appeared in the image and both circles have disappeared. We add one of
lines into the objective function and remove one circle. This way, we look for
one circle and one line in images. This example illustrates graduate changes of
the objective function. Furthermore, we try to preserve some information from
the previous objective function, in this example, one circle. We do not want
to lose this information. Nevertheless, one can change the desired behaviour for
different needs in particular domains. For instance, one could change the objective
function to reflect more “promising” images, that is not preserving information
from previous objective functions. We rather modify the objective function step
by step. From now on, we will keep this idea in mind for following definitions.

2.2 Description-based ITS

In this section, we introduce a general instance of the previously presented ITS
framework. Even though this instance is still general, we mainly explain it by
examples from our testing domain of images.

2.2.1 General idea

We can follow the previously described example of the reported user from Picbreed-
er who wanted to evolve an alien face. Obviously, we would like to somehow define
the objective function as the alien face. Let us assume, we can get information
about “good features” from an image. In our example, we would like get in-
formation about objects in the image, for instance, a list of objects with their
prediction accuracies. Even for humans, the first appearance of a car could have

18

been far away from a typical representation of the car. We call this information
a description of a particular image. We are able to get this information and
define the description for each individual from the population. Therefore, the
population of individuals is interchangeable with the population of descriptions.
In other words, we can almost forget about the individuals and focus only on the
descriptions.

We introduce a user-defined description metric in a particular domain between
the objective function and the description of the particular individual. This
metric can be useful to define the inspiration criterion and the inspire method.
We propose that the inspiration criterion will be met if the description metric
value is bigger than a pre-defined threshold. In our previous terms, we called this
image “interesting, promising, or inspiring.”

As a side remark, one could define the description metric similarly to novelty
search (see 1.6), that is, the description metric would be defined between two
descriptions. This way, the search could search for novel descriptions.

2.2.2 Definition

Let us assume, we are able to get a description D ∈ D for an individual I ∈ I by
a function D̄ : I→ D. Let us denote a population P of individuals, an objective
function f ∈ O, and a description metric δ : O × D → R between the objective
function and the description.

We propose the inspiration criterion by the condition

∃I ∈ P : δ
(
f, D̄(I)

)
≥ t (2.1)

for a threshold t ∈ R.

2.3 Multi-view ITS

In the previous section, we mentioned the example of the reported user from
Picbreeder who wanted to evolve the alien face. Obviously, we would like to
somehow define the objective function as the alien face. A high-level approach
could be to use a “database” or a pre-trained classifier for an object recognition.
For instance, one could use the current state of the art methods based on deep
learning [18]. However, we use a low-level approach with pre-defined feature func-
tions for a particular domain which can be considered as a classical optimization
approach.

2.3.1 General idea

In the field of interactive evolutionary computation (see 1.2.3), human beings are
used to rate individuals. We look at the problem from a different perspective.
Instead of asking human beings to rate individuals, we want them to label “inter-
esting or promising” parts of individuals. For instance, in the domain of images,
it could be visually pleasant areas or areas partially resembling faces. Instead of
using interactive evolutionary computation, we can relax humans algorithms. For
instance, in our domain, we can label objects in images. This should represents a

19

Figure 2.1: Example of the description defined by a detection of objects in the
image.

similar behaviour as in visual areas of human brains [6]. For instance, the figure
2.1 shows a possible “promising” area of the image.

From a different point of view, we obtain these parts from a supervisor. This
“hypothetical” supervisor can be an expert in one field and we receive the ex-
pert’s opinion. For instance, teachers of art schools may go to each student in a
classroom and tell the student which part of the painting looks good and which
part the student should focus on. The parts may still looks bad and immature.
But with continuous work, the final result may be way better and maybe even a
masterpiece might arise. Thus, we call these parts promising.

Nevertheless, we only somehow obtained information about the parts and we
do not know why they are supposed to be promising. For instance, students might
be in a similar situation. They receive feedbacks from their teachers about their
works, for instance, such as paintings, compositions, and essays. The teachers are
more experienced and they can see further away than their students. This way,
the students do not receive particular information why the parts are promising.
Maybe, the teachers are not even able to explain their reasons. Therefore, the
students can only improve their works by the only things they know and they
understand. We use the same analogy with pre-defined features for a particular
domain. We try to improve the population by the only things we can do: the
optimization of pre-defined features.

For simplicity, let us assume, we have only one pre-defined feature and we are
given one promising part of the image. We can only do one thing in this context.
We focus on optimizing the feature in this part of the image, for instance, as in
the figure 2.1. With more promising parts, we can use the same principle. We
optimize the feature in a subset of areas. We call these parts windows. Thus, we
are given promising windows in the image. In this sense, the objective function
is defined as a collection of windows to optimize.

By including more pre-defined features, we must determine a feature to op-
timize for a particular window. We found more convenient and robust to rather
think about it as “windows in features” than “features in windows.” This way,
each feature has a collection of windows to optimize. To avoid any problems, let
us assume that features values do not depend on the size of the window. The
objective function consists of a collection of features, that we call views, and each
view consists of a collection of windows. The search optimizes these windows.
Each view and each window is associated with a particular feature function. The
figure 2.2 shows a visual example of this representation of the objective function.

Until now, we assumed the existence of only one supervisor who gives us
promising parts. Nevertheless, we may have more experts and each of them

20

Figure 2.2: Example from the domain of images of visual representation of pro-
jecting windows from the description D = D̄(I) of the particular individual I
to the objective function f . Blue rectangles are windows representing promising
areas in the image. Views A1, A2, and A3 represent different viewpoints for the
image. Red rectangles are windows that are currently optimized. Views V1, V2,
V3, V4, and V5 represent the pre-defined features.

can tell us promising parts from a different point of view. Again, we call these
parts windows and the expert’s opinions views. The collection of views is the
description of the particular individual presented in the previous section. The
figure 2.2 shows a visual example of this representation of the description. To
summarize, we are able to obtain the description for the particular individual.
This description consists of a collection of views representing different experts
viewpoints. Each view consists of a collection of windows representing promising
parts from this viewpoint.

The objective function can be considered as a special kind of a description of
an individual we search for. It has the same structure. Nevertheless, the descrip-
tion of the individual and the objective function may have different dimensions.
Precisely, they consist of a different number of views. It basically means we try
to project windows of views from the description into views from the objective
function, see figure 2.2. We must not forget that they represent something else,
experts opinions versus features spaces.

2.3.2 Properties

We call the presented approach multi-view ITS. We obtain promising parts from
the different point of views and we try to project them into features spaces. In the
field of semi-supervised learning [2], which makes use of labelled and unlabelled
data, there is an area called multi-view learning. The idea of multi-view learning
is to look at an object from more different viewpoints. Nevertheless, the general
idea is the only shared property with our approach because we do not deal with
semi-supervised learning.

From another point of view, a window in the objective function defines a new

21

“local” feature. This local feature is defined by the pre-defined feature function
but it is applied only to a sub-problem, for instance in our domain, an area of the
image. From this viewpoint, the objective function is defined by local features
and we create new local features based on building blocks defined by the pre-
defined “global” features. In other words, the full problem is relaxed and we
search the search space by solving sub-problems.

We believe that this approach can be applied to any difficult domain that can
be split into sub-problems. Obvious application is art. For instance, in the do-
main of music, one can look for the parts with harmonies, beats, and so on. One
can easily imagine other possibilities from art such as movies, books, and so on.
Nevertheless, we believe it can even be applied to more traditional optimization
problems. For instance, NP-hard problems such as maximum satisfiability prob-
lem (MAX-SAT): the problem of determining the maximum number of clauses,
of a given Boolean formula in conjunctive normal form, that can be made true by
an assignment of truth values to the variables of the formula. The description’s
views can represent special structures of clauses. Another example could be any
graph problem, in which we are able to select sub-graphs with special properties.

In the field of evolutionary art (see 1.2.4), several works [74, 75, 52, 80] used
critics or co-evolution of critics. Critics make comments and evaluate artworks,
which can be used to change the artworks. The latter evolves a population of
critics alongside the regular population. Nevertheless, they typically assign a
single aesthetic value to an artwork.

2.3.3 Definition

Let us assume, we have N feature functions F1, . . . , FN for the particular domain
and their values do not depend on the size of the problem in this domain. The
window W ∈W labels a part of the original problem. The view V is a collection of
windows. The description D is a collection of views. The objective function f has
the same structure as the description. For clarification purposes, we denote the
window and the view as WI , VI when it comes from the description D = D̄(I) of
the particular individual I and as WO, VO when it is part of the objective function
f . FVO is the feature function associated with the view VO from the objective
function f . FVO(W, I) is the value of the feature function FVO applied to the part
specified by the window W in the individual I. A metric ‖D‖W represents a
number of windows in the description D and a metric ‖D‖V represents a number
of views in the description D.

2.3.4 Objective function for optimization technique

We have presented the structure of the objective function that is used by the un-
derlying optimization technique. To recall, the objective function consists of win-
dows for each feature (view) that the optimization technique optimizes. In other
words, we have a feature value for each window. This represents a multi-objective
optimization problem. Nevertheless, the most optimization techniques only use
one value for an individual. To solve this problem, one could use scalarization
approaches, in which multi-objective optimization problems are transformed to
single-objective optimization problems, or approaches based on Pareto fronts. For

22

instance, in the field of evolutionary computation, one could use NSGA-II [17].
We use a basic linear scalarization. The fitness value for the individual I is

computed as ∑
VO∈f

∑
WO∈VO

(wWO
· FVO(WO, I)) (2.2)

where f is the current objective function, and wWO
∈ R is the weight for the

window WO. One could define the weight as the size of the window, that would
result in preferring larger areas with high features values. In our domain, we
do not prefer bigger areas, therefore each window WO has the same weight of
wWO

= 1.
Another problem can be caused by using features with different domains. High

values of one feature can decrease the meaning of other features. Furthermore,
in our domain, we may not know the domain of features in advance. Even, the
knowledge of the domain does not help when the values are irregularly distributed.
For instance, a mathematical upper bound may be too high and no individual
probably ever reaches this value. It would result in decreasing the meaning of
this feature. Therefore we use adaptive scaling of features values. The idea is to
scale each feature to the range of [0, 1] by the previously observed values. Then,
each feature has the same weight for the underlying optimization technique. The
feature value is scaled by the maximum and the minimum value of this feature
that has been found until the previous generation. The scaled value can be larger
than 1 only when the new bound has been found this generation. The scaled
value of the feature F with value x in the generation number t+ 1 is defined as

x− FMIN
t

FMAX
t − FMIN

t

(2.3)

where FMIN
t , FMAX

t is the minimum, the maximum value of the feature F until
the generation number t.

2.3.5 Description metric by coverage and extension

In this thesis, we propose a description metric between the objective function f
and the description D based on two parts: the coverage and the extension. For
purposes of a demonstrative explanation, we assume that the description and the
objective function contain only one view. The first part represents how much the
objective function f is similar to or preserved by the description D. If the new
objective function is defined as the description D, a high value of the coverage
part should keep the similar “structure” of the previous objective function f . The
latter part represent how much the description D extends the objective function
f . If the new objective function is defined by adding the description D into f , a
high value of the extension part should represent a higher “informational” gain
in comparison with f .

One can think about it from a typical perspective of local search: exploitation
and exploration. If the search focuses only on the coverage part, it will focus on
exploitation. It forces to preserve what has found and it focuses on this area in
the search space. On the other hand, if the search focuses only on the extension
part, it will focus on exploration. It will search for different things in comparison
with it has now. As in algorithms of local search, we need to find a right balance

23

between exploration and exploitation. With this formalization, one can explicitly
set the focus on the desired part and set the desired balance between them.

Formally, the description metric δ is defined by the coverage C : O× D→ R
and the extension E : O × D → R between the objective function f and the
description D as

δ(f,D) = C(f,D)α · E(f,D)β (2.4)

where α, β ∈ R are parameters. We define it as a multiplication, because we want
to focus on both parts. To recall, we would like to keep the presented gradual
incremental approach. We prefer to have a good trade-off between the coverage
and the extension than extreme cases. As a side remark, one could define that
the inspiration criterion will be met if the extension value of any individuals is
greater than a pre-defined threshold. In other words, the inspiration criterion
would focus on the exploration of search space.

For later purposes, we found also convenient to define the extension and the
coverage from the point of view of a single window. We denote C(WO, D) or
C(WO, VI) the coverage between the window WO ∈ f and the description D or
the view VI ∈ D, and E(f,WI) or E(VO,WI) the extension between the objective
function f or the view VO ∈ f and the window WI ∈ D. Formally, they are
the same functions because we can extend the window or the view into the full
representation of the description.

2.3.6 Inspire method

The inspire method can be split into two parts. Firstly, we need to select the
description(s) to define the new objective function. To make it simple, we can
assume the selection of only one description. If we select more descriptions, we
could make their intersection or union depending on a particular domain. The
simplistic way is to select the description according to the description metric val-
ue. There are two basic options: to select the description with the highest value or
to randomly select the description with the probability defined by its description
metric value. Another option would be to only consider the individuals satisfying
the inspiration criterion.

Secondly, after the choice of the description, we modify the current objective
function by this description. There are three basic options to modify the ob-
jective function: adding a new window to the objective function, and modifying
or removing an existing window from the objective function. For these modifica-
tions, we use general operators. For instance, evolutionary algorithms use general
operators such as mutations and crossovers to modify the population. To make
it simple, we propose operators that can change at most one window. This ap-
proach follows our gradual incremental approach. We do not make huge changes
in the objective function that could be hard for the population to adapt to. For
their definition, we use the previously defined extension and coverage between
each window and the current objective function. In this thesis, we do not use
operator to change the existing window.

24

Adding a window

We need to choose a window from the description D to add it to the objective
function f . For this purpose, we use information about the extension for each
window. We prefer the window with the higher extension value. To recall, it
represents how much the window extends the objective function. Furthermore, we
have extension values E(VO,WI) between each window WI from the description D
and each view VO from the objective function f . Therefore, we can immediately
chose a view where to add a window. We make two decisions at one step: the
choice of the window and the choice of the view representing the particular feature
where to add this window. There are two basic options: to select the window with
the highest extension value of to randomly select the window with the probability
defined by its extension value.

Removing a window

We need to choose and remove a window from the objective function f . For
this purpose, we use the information about the coverage of each window. To
recall, it represents how much the window from f is preserved by the particular
description. This can represents a support to keep the window in the objective
function. In other words, 1−C(WO, D) is the probability to remove the window
WO ∈ f from the objective function f .

Additionally, we introduce a threshold for a window to be removed and a
limitation of removing only one window. That means, we iterate through all
windows WO ∈ f in the objective function f . If the coverage value C(WO, D)
is smaller than the threshold R ∈ R, where D is the description used to modify
the current objective function, the window will be removed with probability 1−
C(WO, D). If the window is removed, we will end. We want to remove at most
one window.

2.3.7 Simplify method

To recall, the simplify method can simplify the current objective function during
the diversification phase when the inspiration criterion is not met. The simplistic
approach is to remove one window from the objective function f each time the
inspiration criterion is not met. We propose a simple method based on the aver-
age coverage of the window in the whole population. It computes the averaged
coverage for the window WO ∈ f from the objective function f as

1

|P |
·
∑
I∈P

C(WO, D̄(I)) (2.5)

where P is the current population and |P | is the size of the population. The idea
is that the lower value the worse window. We have two basic options: to select
the window with the lowest value or to randomly select the window with the
probability defined by this value. In the worst case, we keep removing windows
during the diversification phase until the objective function is empty.

Another option would be to gradually increase a probability to remove a
window. This way, it would remove the window only when it is necessary, that is
during longer diversification phase. Another completely different approach, which

25

(a) Objective function (b) Description (c) Objective function
and description in the
same area of the image.

Figure 2.3: Visual representation of the objective function f and the description
D in the same area.

does not always simplify the objective function, would be to have a different
inspiration criterion for the diversification phase, preferably more easier to be
met.

2.4 Description metric for images

To build the idea of our definition, we start with a simple case. Let us assume, we
have only one feature function FVO , the objective function f with one view VO,
the description D = D̄(I) of the individual (image) I with one view VI , and their
definition as in the figures 2.3a and 2.3b. To recall, VO represents the optimized
area by the optimization technique and VI contains promising areas of the image
I. For visual purposes, we can imagine both of them at the same area of the
image, see figure 2.3c.

The general idea to define the extension E(f,D) and the coverage C(f,D) is
based on areas of their windows. If D is added to f , the extension represents how
much new area is gained by D. If the meaning of f and D is exchanged, that is, D
is the new objective function, the coverage represents how much area is preserved
from f . Nevertheless, we found more convenient to define the extension and the
coverage from the point of view of a single window. These values are then useful
to modify the objective function.

First of all, we need to raise several general questions. Do we want to prefer
larger area? Does larger area represent more promising area? To recall, the
windows were obtained from a “hypothetical” expert and we do not know why
they are supposed to be promising. In the domain of images, we do not want
to prefer larger areas. The larger does not necessary mean better. For instance,
the area of the face in The Mona Lisa painting by Leonardo da Vinci is smaller
than a huge simple circle in the whole painting. On the other hand, the larger
area may have higher probability that the search finds something in it. However,
ITS is based on splitting a problem to sub-problems. Otherwise, we could have
only optimized the whole image. Do we know which is more promising window
from two windows of the same size? To recall, the only information we obtained
is that they are both promising. We assume that we do not know which area
is more promising, that means the windows are incomparable. For instance, one

26

(a) Extension (b) Coverage

Figure 2.4: Visual definition of the area part of the extension and the coverage.
Blue windows are from the objective function and red windows are from the de-
scription. The full objective function and description are shown in the figure 2.3.

of them might be already perfect and the second might be just at the beginning
of the process, but the final result might surpass the first. Of course, we want
the whole image to be “interesting” in the end. One could argue we could only
optimize the sum area of the windows. Nevertheless, ITS tries to get there by the
gradual incremental approach and not by the direct optimization where it could
prematurely converge.

2.4.1 Extension

In the presented perspective, the extension E(VO,WI) of the window WI ∈ VI
from the description D and the view VO from the objective function f is how
much area is gained by extending VO with WI . The figure 2.4a shows this idea.
We compute the area of the complement between WI and VO and normalize it by
the maximum possible gained area, which is the absolute complement of VO. This
represents a ratio of the gained space. We could have normalized it with the area
of the view VO. It would represent the relative improvement and not the global
one. We also tried this approach but our proposed version produced visually
better results in our preliminary experiments. The idea of our normalization is
to get rid of the influence of the size of the area. However, the larger area can
have a higher probability to more extend the rest of the image and we claimed we
do not prefer larger areas. On the other hand, this preference is not explicit. To
overcome this disadvantage, we consider only windows of size smaller than the
quarter of the whole image.

Additionally, we can include information about the quality of the window WI

according to the feature FVO . To recall, the window WI was obtained from a
“hypothetical” supervisor. Nevertheless, it can be projected it to the view VO
associated with the feature FVO . The window with the higher value is a better
candidate for extending the objective function. By putting these two information
together, we define E(VO,WI) as

E(VO,WI) =
area(WI \ VO)

area(V {
O)

· FVO(WI , I) (2.6)

where V {
O is the absolute complement of VO and area represents the size of the

argument in pixels.

27

With more views in the objective function f , we compute the average exten-
sion of the window WI as

E(f,WI) =
1

‖f‖V
·
∑
VO∈f

E(VO,WI) (2.7)

When the description D contains more than one window, we compute E(f,D)
as the average extension value for all windows by

E(f,D) =
1

‖D‖W
·
∑
WI∈D

E(f,WI) (2.8)

One could define it by the maximum value. It would represent the maximal
extension of a single window from the description. When the description D
contains no windows, we define the extension as

E(f, ∅) = 0 (2.9)

because we gain nothing.

2.4.2 Coverage

In comparison with the definition of the extension, we look at the problem from
the point of view of the objective function. In this perspective, the coverage
C(WO, VI) of the window WO ∈ VO from the objective function f and the view
VI from the description D is how much area of WO is preserved by defining the
new objective function as VI . The figure 2.4b shows this idea. We compute the
area of the intersection between WO and VI and normalize it by the size of the
window WO. This represents a ratio of the preserved space. Similarly to the
definition of the extension, it has the same problem. The larger area of VI can
have higher probability to preserve the window WO or the smaller area of WO

can have higher probability to be preserved.
Again, we can include information about the quality of the windowWO accord-

ing to the feature FVO . The window with the higher value is a better candidate
for preserving. Finally, we define C(WO, VI) as

C(WO, VI) =
area(WO ∩ VI)

area(WO)
· FVO(WO, I) (2.10)

With more views in the description D, we compute the average coverage of
the window WO as

C(WO, D) =
1

‖D‖V
·
∑
VI∈D

C(WO, VI) (2.11)

Another option would be to virtually merge all views together. All windows from
all views would be put in the same area and the window WO would be checked
against this “virtual” view. The idea is that we cannot compare the windows
from experts, therefore we treat them all in the same way.

28

(a) C = 0, E = 0 (b) C = 1, E ↓ (c) C = 1, E = 1

(d) C ↓, E = 0 (e) Windows share
the same area. C =
1, E = 0

(f) C = 0, E = 1

Figure 2.5: Simple examples of the definition of E and C. The objective function
f is blue and the description D is red. A symbol ↓ represents a low value.

When the objective function f contains more than one window, we compute
C(f,D) as the average coverage value for all windows by

C(f,D) =
1

‖f‖W
·
∑
WO∈f

C(WO, D) (2.12)

Similarly to the definition of extension, one could define it by taking the lowest
value. It would represent the minimal coverage of a single window in the objective
function. The particular choice biases the resulting images and it highly depends
on the definition of inspire method and the needs in a particular domain. When
the objective function f contains no windows, we define the coverage as

C(∅, D) = 1 (2.13)

because we loose nothing.

2.4.3 Summary

It is worth noting that the extension E and the coverage C are not correlated,
see the figure 2.5 for simple examples.

We use adaptive scaling for feature values, therefore the extension and the
coverage are from the range of [0, 1] most of the time. The value can only be
bigger when the new bound has been found in the current generation.

By putting everything altogether, we define the extension E(f,D) for the
objective function f and the description D as

E(f,D) =

1

‖D‖W
· 1

‖f‖V
·
∑
WI∈D

∑
VO∈f

E(VO,WI) when ‖D‖W 6= 0

0 otherwise

(2.14)

29

and the coverage C(f,D) as

C(f,D) =

1

‖f‖W
· 1

‖D‖V
·
∑
WO∈f

∑
VI∈D

C(WO, VI) when ‖f‖W 6= 0

1 otherwise

(2.15)

They are used for the description metric δ(f,D) computed as

δ(f,D) = C(f,D)α · E(f,D)β (2.16)

where α, β ∈ R are parameters.

30

3. Experimental setting

In this chapter, we describe settings for our experiments. Firstly, we introduce the
representation of images. Then, we present the optimization techniques to create
images with the concrete setting. Thirdly, we present used feature functions
with typical examples of their produced images. Lastly, we describe the concrete
settings of inspiration-triggered search for our experiments.

3.1 Image representation

An image is represented by a CPPN (see 1.1.1), which is a variation of an ar-
tificial neural network. We use the similar setting as in Picbreeder (see 1.5).
Nevertheless, we use only feed-forward neural networks to describe images. It is
worth noting that this image representation has infinite resolution. We choose to
generate images with resolution of 256× 256 pixels.

As described in 1.2.5, the feed-forward neural network to generate the image
has 3 input nodes. X and Y coordinates in the image and the distance from the
center of the image to the current pixel. These values are linearly scaled to the
range of [−1, 1]. For instance, let us assume the image of size N × N pixels, X
and Y coordinates from the domain [0, N − 1] and the distance from the center
from the domain [0, N−1√

2
] are linearly scaled to [−1, 1]. The network has one

output node representing the value of the current pixel transformed by an output
function. We use the output function described in [89] defined as 255 · |x|, where
x is the output value of the network. The brightness of pixel is darker the closer
the output is to 0. Therefore, the output of 1 or −1 produces white. We also
tried linear scaling as [−1, 1] → [0, 255], but the previous approach was found
to produce the most interesting patterns in early generations. The images are
sharper and it is harder for the network to produce black areas. The figure 3.1
shows a comparison.

The available CPPN activation functions are signed versions of sigmoid, Gaus-
sian, and sine functions, resulting in a node output range of [−1, 1], and linear
function. The output range of the linear function is not restricted beforehand.
Therefore, we explicitly limit the output value of the network to [−1, 1]. We

(a) x→ 255 · |x| (b) [−1, 1]→ [0, 255]

Figure 3.1: Comparison of an image generated with different output functions.
The image (a) was generated by output function: x → 255 · |x|. The image (b)
was generated by linear scaling of the output value: [−1, 1]→ [0, 255].

31

use similar functions as in [85, 90] to capture regularities that appear frequently
in nature (f.e. symmetry, repetition, and repetition with variation) without an
intentional aesthetic bias.

Recurrent neural networks

We experimented with recurrent neural networks, where connections can form
a directed cycle, and non-recurrent (feed-forward) networks in our preliminary
experiments.

Using recurrent neural networks brings a question about how many times to
active a network. To recall, the activation of recurrent network works differently
in comparison with the feed-forward network. In feed-forward networks, a single
activation of the network is done a layer by layer. It does not contain cycles,
therefore we get immediately the output. On the contrary, the recurrent network
contains directed cycles and it must be repeatedly activated. In one activation,
each node takes its inputs and computes its output. This yields the problem of
how many times to activate the network.

Firstly, the recurrent network does not have to converge or it can converges
in cycles, see the figure 3.2 for an example. Furthermore, the problem whether
the network converges or not is undecidable problem [86]. Recurrent networks
are computationally equivalent to Turing machines and this problem represents
the halting problem for Turing machines.

1 2 3 4 5 6

7 8 9 10 11

Figure 3.2: Example of a convergence of a recurrent neural network in cycles.
Numbers represent the number of activations of the recurrent neural network.
Afterwards, the network repeats last four images (8− 11) in cycles.

Secondly, let us assume, we want to at least propagate all node values to the
output node. The minimal number of activations is the length of the longest
simple path in the network, that does not have any repeated vertices, from any
input to any output of the network. Nevertheless, the longest path problem is
NP-hard problem.

Finally, we use neural networks to generate images and not to describe a be-
haviour over time with a memory, for instance, such as in a robotics domain.
Also, we want the image to be described by a simple formula. With the given
number of activations, we can unfold the recurrent network to feed-forward net-
work over time. From this point of view, the recurrent link creates easily more

32

nodes. Thus, a mutation of adding a recurrent link in NEAT (see 1.2.2) results
in adding more nodes in the unfolded feed-forward network.

Our preliminary experiments showed the similar performance for both types
of networks. Therefore, we chose only to evolve feed-forward neural networks to
describe images by simple formulas. On the other hand, Picbreeder uses topology
of any type.

3.2 Underlying optimization technique

We chose NEAT (see 1.2.2) as our underlying optimization technique. Its incre-
mental complexification, that is incrementally adding new nodes over generations,
is similar to our approach. ITS starts with simple images and makes them more
complex over time. Picbreeder also uses NEAT. Our implementation is based on
MultiNEAT [13] which is a portable software library implementing NEAT.

We use the similar setting as in the original NEAT, Picbreeder, and similar
experiments [94, 24]. The table 3.1 shows NEAT parameters used in our exper-
iments. These parameters were chosen based on our preliminary experiments,
in which we optimized a set of features. We did not try to optimize the setting
towards, that one feature performs best or all of them together. Furthermore, no
free lunch theorems [103] tell us that in general it is not even possible to optimize
settings such that each feature separately performs best.

We use population of 150 individuals with a number of species between 10
and 15, which is also used in HyperNEAT algorithm to evolve CPPNs describing
connectivity patterns of neural networks. Offspring has 0.05 probability of adding
a node, 0.04 probability of adding and removing a link, 0.001 chance of removing
a node, 0.9 chance of link weight mutation, and 0.02 chance of changing an
activation function for a node. Recurrent connections within the CPPN are not
enabled 1. The disjoint and excess node coefficients are both 2.0 and the weight
difference coefficient is 1.0. The activation function difference coefficient is set
to 1.0 allowing to distinguish networks with different activations functions. The
compatibility threshold is 6.0, the compatibility modifier is 0.3, and the minimal
compatibility threshold is 0.2. The weight range of CPPN is [−8, 8], the maximum
perturbation for a weight is 1.0, and the maximum magnitude of a replaced weight
is 2.0.

The available CPPN activation functions are signed versions of sigmoid, Gaus-
sian, and sine functions, and linear function, all with equal probability of being
added. The initial population of NEAT starts with Gaussian function as the out-
put’s activation function, but this function can be later changed by mutations.

3.3 Features

In this section, we present features we use for our experiments. Our domain is
mainly used in evolutionary art (see 1.2.4), therefore we took an inspiration from
that field. We tested measures from the field of computational aesthetics (see 1.3)

1We fixed a bug in the implementation of MultiNEAT that created connections between
nodes on the same layer even with recurrent connections turned off. Thus, it always created
recurrent neural networks.

33

Parameter Value Parameter Value

PopulationSize 150 MutateRemSimpleNeuronProb 0.001
DynamicCompatibility True RecurrentProb 0.0
MinSpecies 10 MutateWeightsProb 0.9
MaxSpecies 15 MutateWeightsSevereProb 0.5
YoungAgeTreshold 15 WeightMutationRate 0.75
YoungAgeFitnessBoost 1.1 WeightMutationMaxPower 1.0
SpeciesMaxStagnation 15 WeightReplacementMaxPower 2.0
OldAgeTreshold 35 MaxWeight 8.0
SurvivalRate 0.2 MutateNeuronActivationTypeProb 0.02
CrossoverRate 0.75 DisjointCoeff 2.0
OverallMutationRate 0.25 ExcessCoeff 2.0
InterspeciesCrossoverRate 0.01 WeightDiffCoeff 1.0
MultipointCrossoverRate 0.6 ActivationFunctionDiffCoeff 1.0
RouletteWheelSelection False CompatTreshold 6.0
MutateAddNeuronProb 0.05 MinCompatTreshold 0.2
MutateAddLinkProb 0.04 CompatTresholdModifier 0.3
MutateRemLinkProb 0.04

Table 3.1: The NEAT parameters used in our experiments.

and measures defining a sharpness of the image (see 1.4). We subjectively chose
measures that produced some visual results. For instance, information entropy
(see 1.3.2), and Benford law (see 1.3.3) mainly produced images with simple
gradients or an area with one colour. Thus, optimization by NEAT for them
converged in a few generations. We suggest they are more appropriate for fine
art than for our artificially created images. Our implementation uses OpenCV
library [11] to manipulate images.

3.3.1 Global contrast factor

In comparison with the original version described in 1.3.4, we only use super-
pixels of sizes up to 50. In the original paper, the authors used images with
resolution of 800× 600. Our images have smaller resolution of 256× 256. Thus,
we use super-pixels of following sizes: 1 (the original image), 2, 4, 8, 16, 25, and
50, and we re-define weighting factors wi (see formula 1.11) as

wi = (−0.406385 · i
7

+ 0.334573) · i
7

+ 0.0877526 (3.1)

where i ∈ {1, . . . , 7}. The measure MGCF for an image I is re-defined (see
formula 1.10) as

MGCF (I) =
7∑
i=1

(wi · Ci) (3.2)

Examples of images created by the optimization of global contract factor are
shown in the figure 3.3.

34

Figure 3.3: Examples of images created by optimization of global contrast factor.

3.3.2 Relaxed symmetry

Examples of images created by the optimization of relaxed symmetry described
in 1.3.5 are shown in the figure 3.4. We find these images visually very simple.

Figure 3.4: Examples of images created by optimization of relaxed symmetry.

3.3.3 Normalized variance

Examples of images created by the optimization of normalized variance described
in 1.4.2 are shown in the figure 3.5. Similarly to relaxed symmetry, the images
are visually very simple.

Figure 3.5: Examples of images created by optimization of normalized variance.

3.3.4 Tenengrad

Examples of images created by the optimization of Tenengrad described in 1.4.1
are shown in the figure 3.6. The images are similar to images created by the
optimization of global contract factor.

Figure 3.6: Examples of images created by optimization of Tenegrad.

3.3.5 Choppiness

Choppiness measure MC is computed as the average standard deviation of pixels
over all 5× 5 windows within the image. The same measure was used in [46].

35

Examples of images created by the optimization of choppiness are shown in the
figure 3.7. The images mainly contain “noise” or more precisely high frequencies.

Figure 3.7: Examples of images created by optimization of choppiness.

3.3.6 Image complexity by JPEG compression

This measure uses the image complexity defined by Machado and Cardoso de-
scribed in 1.3.1. We compress an image by JPEG compression with a quality
setting of 75%. The measure MIC for the image I is defined as

MIC(I) =
RMS(I)

CompressionRatio(I)
(3.3)

where RMS is the difference between the original and the compressed image
expressed as the root mean square. The compression ratio is the ratio between
the original and the compressed image size.

Examples of images created by the optimization of image complexity by JPEG
compression are shown in the figure 3.8. Similarly to choppiness, the images
mainly contain high frequencies.

Figure 3.8: Example of images created by optimization of image complexity by
JPEG compression.

3.3.7 Maximum of absolute Laplacian

We define another simple way to estimate a sharpness of an image. We take
the maximal value from absolute values of Laplacian of an image. The measure
MMAL of the image I is defined as

MMAL(I) = max(|L(I)|) (3.4)

where L(I) is computed by convolving the image I with the Laplacian operator

L(I) =

0 1 0
1 −4 1
0 1 0

 ∗ I (3.5)

where ∗ denotes the 2-dimensional convolution operation.
Examples of images created by the optimization of maximum of absolute

Laplacian are shown in the figure 3.9. The optimization does not produce images
with high frequencies in comparison with Tenengrad. The features is basically an
edge detector, therefore the images are sharp.

36

Figure 3.9: Examples of images created by optimization of maximum of absolute
Laplacian.

3.3.8 Feature as penalty

For later purposes, we also need to define a feature (penalty) to penalize high
frequencies. A simple solution is to use choppiness and image complexity by
JPEG compression, see their produced images in the figure 3.7 and 3.8.

Penalty by choppiness

We use choppiness MC described in 3.3.5 and define a penalty PC for an image I
as P

PC(I) =

1

Mc(I)
when MC = 60

1 otherwise
(3.6)

This definition is based on our preliminary experiments.

Penalty by image complexity by JPEG compression

We use image complexity by JPEG compression MIC described in 3.3.6 and define
a penalty PIC for an image I as

PIC(I) =

1

MIC(I)
when MIC > 1

1 otherwise
(3.7)

We only want to penalize high frequencies and not to support “simple” images,
thus the condition MIC > 1 is used.

3.4 Inspiration-triggered search

In this section, we describe the shared setting of ITS for our experiments. Experi-
ments differ only by the inspiration threshold I (used by the inspiration criterion),
the threshold R to remove a window from the objective function (used by the
operator to modify the objective function), and a set of features.

We run ITS for 40 creative cycles. Without a convergence of the optimization,
it would be the optimization by NEAT for 400 generations and at least 20 possible
times to change the objective function. Nevertheless, each trial is unique. The
number of iterations for the underlying optimization is 10 and the convergence
limit for the optimization is 10.

37

Modification of the objective function

The description to modify the objective function is selected by the best description
metric value. The modification of objective function is achieved by a set of
operators. We typically use one or two operators: adding or removing a window.
To add a new window to the objective function, we use the random variant in
which the probability to select the window is defined by the extension value. We
also tested the other variant of the selection by the best extension value. The
random version produced visually better images in our preliminary experiments.
If we also want to remove a window from the objective function, we will set it
as the first operator. This way, first of all, one window is removed from the
objective function and then the new window is added by the second operator.
The operators use the extension and the coverage values defined by the original
objective function. For simplification, when the operator to remove a window
from the objective objective is not used, we say that R = 0.

After the change of the objective function, we reset the current information
about the best fitness value and the number of stagnations in NEAT. This way,
the objective function is not penalized by mistakes from the previous objective
function. Additionally, the reset of the best fitness value found so far is crucial.
Objective functions may differ in the number of their windows and the upper
bound for the fitness value in NEAT with our adaptive scaling is the number of
windows. Without the reset, the new objective function with less windows could
immediately converges.

Description

We use only one view in the description of an image. We define windows by
detection of contours in the image. As mentioned in 2.3.1, this should represent
a similar behaviour as in visual areas of human brains [6]. As a side note, we also
used a detection of human faces in our preliminary experiments.

Firstly, we detect edges by the Canny Edge detector and the result is used to
find contours in. We use functionality from OpenCV library. The window for the
view is defined by a bounding rectangle of a contour. We consider only windows
with an area bigger than 2000 and smaller than the quarter size of the whole
image. It is used in order to overcome possible disadvantages of large windows
(see 2.4.1). Figure 3.10 shows several examples of descriptions.

Diversification method

To diversify the population, we use mutations from NEAT. Other options would
have been to use another form of random walk or novelty search. We iterate
through the whole population and we apply mutations from the current instance
of NEAT used for the optimization to each individual. We apply it for two times
to get a more diverse population. This operation can harm an arrangement of
individual into species in NEAT. Therefore, we forget the current speciation and
we again separate the individuals into new species. This way, the diversification
can change the number of species in NEAT.

During the diversification phase, if the inspiration criterion is not met with
the objective function having no windows in 10 tries, NEAT will be reset. In

38

Figure 3.10: Examples of views by detection of contours.

other words, ITS starts again from scratch because it is at the same situation.

Extension

The extension values of description metric have much smaller values in compari-
son with the coverage values. One approach to increase their values is to change
α and β parameters of δ. We take another approach and directly scale the area
of the complement (see 2.4.1) by the function

f(x) =
2x

x+ ω
(3.8)

where ω is a constant representing the maximum value of x. Thus, we re-define
E(VO,WI) from the original formula 2.6 to

E(VO,WI) =
2 · area(WI \ VO)

area(WI \ VO) + area(V {
O)
· FVO(WI , I) (3.9)

This decision was particularly made for our size of images and with simple settings
of α = 1 and β = 1.

39

4. Evaluation

In this chapter, we evaluate proposed inspiration-triggered search (ITS) for our
testing domain of images. Firstly, we introduce two methods for a comparison.
Secondly, we describe several selected runs of ITS to get more familiarized with
its behaviour. Thirdly, we compare ITS with different settings and with the un-
derlying optimization using the same set of feature functions. Lastly, we provide
a summary of the results from the comparison.

4.1 Methods for comparing complexities

Our goal is to compare ITS with the underlying optimization technique using the
same set of feature functions and to show whether ITS produces “more complex”
and visually better images or not. From now on, we will call the underlying
optimization technique an “uninspired search.”

In the domain of images, we can visually compare the generated images.
Nevertheless, this comparison is subjective. We would also like to have a non-
subjective measure. Especially, we would like to compare images by their “com-
plexities.” However, how to define a complex image is a difficult problem by
itself.

4.1.1 Complexity test by optimization

Our initial idea is to test whether the image can be found or not by the used
optimization technique using the image as an objective function. We define the
objective function as Euclidean distance to the desired image. In other words, it is
the distance in the pixel space between two images and the optimization technique
minimizes this pixel distance. We can define that the image is complex when it
cannot be found by this approach. We split the domain of pixel distances into
two ranges for the classification purposes based on our preliminary experiments,
in which the values were usually scattered into two clusters, see the figure 4.1.
From these results, we defined a border for the classification. When the pixel
distance is lower than 16000, the image is classified as simple, otherwise it is
labelled as complex image. We found from our preliminary experiments that
600 generations is sufficient for this complexity test. When it did not converge
before 600 generations, best pixel distance improved for less than 1000 for another
400 generations and this improvement was insignificant in comparison with the
distance values.

For a single image, we gather the pixel distances of the best individuals from
the last generations of all trials. This represents the difficulty to found the im-
age. To compare an algorithm, we select representative generated images from
it and we aggregate their results together. For instance, the figure 4.1 shows a
comparison by boxplots for uninspired search using one feature function.

However, our experiments revealed that the optimization technique is only
able to find visually simple images. For instance, images in the figure 4.3 at
coordinates [2, 4], [2, 5], [4, 1] (row, column) were able to be found, but visually
simple images at coordinates [1, 5], [2, 2], [3, 7] were not. The complexity test by

40

Nor
ma

lize
d v
aria

nce

(24
 tri
als
)

Ma
xim

um
 of

abs
olu
te L

apl
aci
an

(20
 tri
als
)
Rel
axe

d s
ym

me
try

(29
 tri
als
)

Glo
bal
 co
ntr
ast
 fac

tor

(25
 tri
als
)

Glo
bal
 co
ntr
ast
 fac

tor

wit
h p

ena
lty

(15
 tri
als
)

0

5000

10000

15000

20000

25000

30000

Di
st
an
ce
 in
 p
ix
el
 s
pa
ce

Figure 4.1: The results of the complexity test by optimization for generated
images from uninspired search using one feature function.

optimization labels the latter as complex. However, we would like to label all
these images as simple according to our subjective perspective. Furthermore, we
consider all images used for the complexity test in the figure 4.1 as simple.

Our explanation of this problem is based on the idea shown in the figure 4.2.
We split the domain of images into four classes. The first class (I) represents
images containing simple gradients, and only one colour, for instance, images at
coordinates [2, 5], [5, 3] (row, column) in the figure 4.3. The second class (II) con-
tains images with simple shapes, patterns, and regularities that are easily created
due to the used image representation by CPPN, for instance, images at coordi-
nates [1, 5], [2, 6], [5, 6]. The third class (III) contains the “true complex” images,
that we would like to create. The fourth class (IV) contains “chaotic” images
with high spatial frequencies, for instance, images at [1, 2], [2, 1], [4, 2], [5, 5]. The
similar idea was used for cellular automata in a work [4] in which complexity
classes in computation refer to the time it takes for a halting computation to
complete with respect to the size of its input.

I II III IV

Figure 4.2: Visual idea of splitting the domain of images into four classes accord-
ing to their complexities. Class I contains images with simple gradients, and only
one colour. Class II contains images with patterns, and regularities. Class III
represents “true complex” images. Class IV contains images with high spatial
frequencies.

41

[0.992, 0.008] [0.985, 0.015] [0.876, 0.124] [0.969, 0.031] [0.951, 0.049] [0.558, 0.442] [0.545, 0.455]

[0.984, 0.016] [0.997, 0.003] [0.529, 0.471] [0.999, 0.001] [0.999, 0.001] [0.995, 0.005] [0.969, 0.031]

[0.991, 0.009] [0.996, 0.004] [0.738, 0.262] [0.972, 0.028] [0.998, 0.002] [0.528, 0.472] [0.938, 0.062]

[0.999, 0.001] [0.804, 0.196] [0.995, 0.005] [0.957, 0.043] [0.967, 0.033] [0.944, 0.056] [0.986, 0.014]

[0.987, 0.013] [0.862, 0.138] [1.000, 0.000] [0.990, 0.010] [0.935, 0.065] [0.998, 0.002] [0.926, 0.074]

Figure 4.3: Examples of simple images from the data set to train a complexity
classifier with their final complexity classifications. The classification of the image
consists of the simplicity and the complexity node.

We believe that the complexity test by optimization is only able to distinguish
the first class (I) from the rest (II, III, and IV). For instance, we think that
images used for the complexity test in the figure 4.1 from normalized variance
and relaxed symmetry belong to the class I, from maximum of absolute Laplacian
to the class II, and global contrast factor to the class II and IV. However, we would
only like to label an image as complex when it is from the class III.

Our first approach to solve this problem is to penalize images with high spatial
frequencies. The idea is that we do not want to create images from the class IV.
Therefore, a fitness value of an individual is multiplied by two penalties: choppi-
ness and image complexity by JPEG (see 3.3.8). Unfortunately, it did not help
too much. The images from global contrast factor with this penalty used for the
complexity test are still classified as complex, see the figure 4.1. Nevertheless,
we will always use this penalty for feature functions creating images from the
class IV.

4.1.2 Complexity classifier

Due to the previously mentioned problems, we tried to distinguish these classes
by machine learning methods. Firstly, we created a data set to distinguish simple

42

[0.118, 0.882] [0.151, 0.849] [0.052, 0.948] [0.107, 0.893] [0.247, 0.753] [0.070, 0.930] [0.335, 0.665]

[0.166, 0.834] [0.078, 0.922] [0.174, 0.826] [0.134, 0.866] [0.055, 0.945] [0.201, 0.799] [0.223, 0.777]

[0.384, 0.616] [0.156, 0.844] [0.124, 0.876] [0.317, 0.683] [0.140, 0.860] [0.103, 0.897] [0.273, 0.727]

[0.118, 0.882] [0.253, 0.747] [0.167, 0.833] [0.058, 0.942] [0.077, 0.923] [0.088, 0.912] [0.046, 0.954]

[0.175, 0.825] [0.090, 0.910] [0.181, 0.819] [0.480, 0.520] [0.288, 0.712] [0.213, 0.787] [0.491, 0.509]

[0.076, 0.924] [0.240, 0.760] [0.454, 0.546] [0.105, 0.895] [0.255, 0.745] [0.153, 0.847] [0.052, 0.948]

Figure 4.4: Examples of complex images from the data set to train a complexity
classifier with their final complexity classifications. The classification of the image
consists of the simplicity and the complexity node.

and complex images from our preliminary experiments. Some of these images
are from the direct optimization using different sets of features. Others are from
different versions of algorithms, that led to the proposed algorithm, with different
settings and using different sets of features. Therefore, the images are not biased
by our proposed algorithm. The images only share the same representation by
CPPN. We mainly labelled an image as simple when it contains simple gradient,
simple and blurred objects (class I and II), high spacial frequencies (class IV), and
when it can easily be created by a random mutation during initial populations
in NEAT (class II), see the figure 4.3 for examples. For the latter, we used the
knowledge from our preliminary experiments. We labelled an image as complex
when it is sharp or it includes more objects, see the figure 4.4 for examples. The
final data set consists of 4113 simple and 1343 complex images. Additionally, we
created another unlabelled data set of 113 images. We used it to visually compare
the results of the classification and to interpret behaviours of different classifiers.

43

[0.657, 0.343] [0.990, 0.010] [0.696, 0.304] [0.552, 0.448] [0.871, 0.129] [0.796, 0.204] [0.992, 0.008]

[0.964, 0.036] [0.838, 0.162] [0.986, 0.014] [0.876, 0.124] [0.963, 0.037] [0.540, 0.460] [0.939, 0.061]

[0.993, 0.007] [0.585, 0.415] [0.860, 0.140] [0.997, 0.003] [0.843, 0.157] [0.605, 0.395] [0.862, 0.138]

Figure 4.5: Examples of images classified as simple by the complexity classifier.
The classification of the image consists of the simplicity and the complexity node.

Secondly, we chose 7 features to describe an image: normalized variance, max-
imum of absolute Laplacian, Tenengrad, choppiness, relaxed symmetry, global
contrast factor, and image complexity by JPEG compression. This set is not
biased by our proposed algorithm, because we never use all of them together.
For instance, maximum of absolute Laplacian was even left out from our final
experiments. It is basically an edge detection and sharp images are classified as
complex. Thus, the optimization of this feature always produced complex im-
ages according to the final classifier. Another option would have been to use the
whole image or its subset and for instance to use deep learning techniques. We
randomly split the data set into training and testing data set with 25% of data in
the testing set. We used the whole data set to obtain the mean and the standard
deviation for each feature. It is used to scale the input values for a classifier to
be centred with the unit variance.

We tested neural networks with a different number of nodes in one hidden
layer and support vector machines (SVM) with different kernels. For both of
them, we use libraries for Python: PyBrain [82] and Scikit-learn [67]. We trained
neural networks by back-propagation for 50 epochs. The neural networks have
two output nodes and a bias. The first output node classifies the image as simple
and the second output node as complex. We will call them a simplicity node and
a complexity node. The node with the higher value wins the classification. We
did not want to only choose the best performing classifier. We subjectively tested
the results on the unlabelled data set. We rather chose a classifier that tends to
classify images as simple than the other way around. We chose the neural network
with 10 nodes in one hidden layer. It had 91.5% classification accuracy on the
testing data. For instance, the neural network with 14 hidden nodes had 92.08%,
SVM with polynomial kernel of degree 3 had 91.94%, and SVM with radial basis
function kernel had 92.23% classification accuracy. Nevertheless, they tended to
classify more images as complex, which we did not want to.

This way, we are able distinguish simple and complex images to some extent.
The main problem is that sometimes we are not even able to tell whether the

44

[0.081, 0.919] [0.178, 0.822] [0.070, 0.930] [0.092, 0.908] [0.328, 0.672] [0.255, 0.745] [0.099, 0.901]

[0.076, 0.924] [0.045, 0.955] [0.096, 0.904] [0.072, 0.928] [0.081, 0.919] [0.078, 0.922] [0.087, 0.913]

[0.081, 0.919] [0.096, 0.904] [0.311, 0.689] [0.056, 0.944] [0.127, 0.873] [0.492, 0.508] [0.072, 0.928]

[0.063, 0.937] [0.068, 0.932] [0.047, 0.953] [0.384, 0.616] [0.084, 0.916] [0.073, 0.927] [0.291, 0.709]

[0.081, 0.919] [0.091, 0.909] [0.445, 0.555] [0.084, 0.916] [0.211, 0.789] [0.228, 0.772] [0.193, 0.807]

Figure 4.6: Examples of images classified as complex by the complexity classifier.
The classification of the image consists of the simplicity and the complexity node.

image is complex or not. Figures 4.5 and 4.6 show examples of the final clas-
sification. We are satisfied that images classified as simple are not “complex”
according to our subjective perspective. However, we consider several images
classified as complex as “simple” (or more precisely, false positives), for instance,
images at coordinates [2, 4], [5, 6] (row, column) in the figure 4.6. Images at coor-
dinates [3, 6], [5, 3], and [1, 5] are at the border of the classification and we would
rather label them as simple images.

4.2 Visualization of ITS

We describe one run of ITS with one feature for which we can visually show
the changes of the objective function. It used relaxed symmetry as the feature
function, I = 0.02 as the inspiration threshold, and R = 0.4 as the removal
threshold to remove a window from the objective function.

We split the run of ITS into evaluations by computationally expensive op-
erations of the population. The optimization by NEAT and the testing of the
inspiration criterion, in which the description for each individual is created, are
the most computationally expensive operations. The diversification of the popu-
lation and the modification of the objective function are computationally trivial
in comparison with the rest. Therefore, we cluster them together as shown in the

45

figure 4.7. Each column represents one evaluation. For this reason, we cannot
straightforwardly compare ITS with the underlying optimization technique. One
generation of the NEAT is also one evaluation. However, ITS has more different
phases and NEAT contains only the optimization operation.

Firstly, we describe the behaviour shown in the figure 4.7. ITS started with
the diversification phase. We consider this evaluation as the initial phase creating
a random population, thus we label it as the 0th evaluation. In the 1st evaluation,
ITS tested the inspiration criterion and the condition was not met because another
diversification phase followed. The best description metric value was 0.00098,
which is lower than the threshold I = 0.02. In the 2nd evaluation, the inspiration
criterion was met. The graph 4.9f shows that the best description metric value
was 0.05. The initial objective function with one window was defined. From the
3rd evaluation, the optimization using this objective function started. It continued
for 10 evaluations (or generations in terms of the optimization technique). Then,
the limit to optimize, which is set to 10, was reached. The inspiration criterion
was not met in the following 13th evaluation and ITS started again to optimize
from the next evaluation. This behaviour repeated until the 52nd evaluation,
in which the optimization reached the limit of stagnations, which is set to 10.
In other words, the best fitness value in NEAT had not improved for the last
10 generations. The graph 4.9f shows that the best description metric values
were always lower than the threshold I. Due to the convergence, ITS tested the
inspiration criterion to find out whether the objective function can be changed
without the diversification of the population or not. The condition was satisfied,
therefore the objective function was modified and ITS continued to optimize
from the next evaluation. Later in the 63rd and 85th evaluation, one window was
removed from the objective function while its modification. The graph 4.9h shows
that even the best convergence values were below the threshold R = 0.4, therefore
the operator to modify the objective function was able to remove one window.
The convergence limit was again reached in 99th evaluation. The inspiration
criterion was not met this time, therefore the population was diversified. In the
following 100th evaluation, the condition was not again satisfied, therefore the
objective function was simplified by removing one window, and the population
was diversified. The same situation happened again in the next evaluation and the
last window from the objective function was removed. This situation can be seen
in the graph 4.9e, where the total number of windows is 0. In the following 102nd

evaluation, the condition was met and the objective function with one window
was defined. The rest of the run shown in the figure 4.8 should be clear.

Secondly, we can analyse the run by the complexity classifier. The graph 4.9a
shows increasing values of the complexity node and the graph 4.9b shows decreas-
ing values of the simplicity node. Only the complexity node values do not tell the
whole story. For instance, the complexity node value may be 0.8, which seems
as a complex image. However, the simplicity node value may be 0.9, therefore
the image is classified as simple. For this reason, we use classification difference
defined as complex node value minus simplicity node value, see the graph 4.9c.
Images are classified as complex, when their classification difference values are
above zero, and vice versa. The graph 4.9d shows the ratio of images classified
as complex in the population. This graph uses only the discrete results of the
classification. The ratio rose up to 0.9, nevertheless the classification difference

46

0 1 2

10

13

10

24

10

35

10

46

5

52

10

63

10

74

10

85

10

96

2

102

10

113

10

124

10

135

10

146

10

157

10

168

10

179

10

190

10

201

10

212

10

...

Evaluations

O
p
er
a
ti
o
n
s

Figure 4.7: Visualization of the selected run of ITS using one feature shows used operations over evaluations. Each rectangle represents
one particular operation. Rectangles of the optimization are grouped together and they use smaller rectangles with their total number.
The objective functions are shown for each change until the 200th evaluation. A red window is the new added one into the objective
function and blue windows are from the previous objective function. For the modification of the objective function, the shown image
was used to modify the objective function, or more precisely, the description of the shown image. For the simplification of the objective
function, the shown image had the highest description metric value in the population. The rest of the run is shown in the figure 4.8.

0 1 2

10

13

10

24

10

35

10

46

5

52

10

63

10

74

10

85

10

96

2

102

10

113

10

124

10

135

10

146

10

157

10

168

10

179

10

190

10

201

10

212

10

223

4

232

10

243

10

254

10

265

10

276

10

287

10

298

10

309

10

320

10

331

10

342

10

353

10

364

10

375

10

386

10

397

10

408

10

419

10

429

Figure 4.8: Operations of the selected run over evaluations. Concrete description is given in the figure 4.7.

47

0 50 100 150 200 250 300 350 400 450
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Co
m
pl
ex

ity
 n
od

e
va

lu
e

Max
Average
Best individual

(a) Complexity node values

0 50 100 150 200 250 300 350 400 450
Evaluations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Si
m
pl
ic
ity

 n
od

e
va

lu
e

Max
Average
Best individual

(b) Simplicity node values

0 50 100 150 200 250 300 350 400 450
Evaluations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(c) Classification difference values

0 50 100 150 200 250 300 350 400 450
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f c

om
pl
ex

 im
ag

es
 in

 p
op

ul
at
io
n

(d) Ratio of images classified as complex

0 50 100 150 200 250 300 350 400 450
Evaluations

0

2

4

6

8

10

12

Nu
m
be

r o
f w

in
do

w
s
in
 o
bj
ec

tiv
e
fu
nc

tio
n

(e) Number of windows in the objective function

0 50 100 150 200 250 300 350 400 450
Evaluations

0.00

0.05

0.10

0.15

0.20

0.25

De
sc
rip

tio
n
m
et
ric

 v
al
ue

Max
Average

(f) Description metric values

0 50 100 150 200 250 300 350 400 450
Evaluations

0.0

0.1

0.2

0.3

0.4

0.5

Ex
te
ns

io
n
va

lu
e

Max
Average

(g) Extension values

0 50 100 150 200 250 300 350 400 450
Generations

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 v
al
ue

Max
Average

(h) Coverage values

Figure 4.9: Information about the selected run of ITS over evaluations. Error
bars have the same meaning as in boxplots, that is, the bottom and the top are
the 25th and the 75th percentiles.

48

was not more than 0.6. When many images are at the border of the classification,
this ratio is very misleading. Curves of all four graphs have a similar shape. From
now on, we will only show the classification difference which includes the most
information.

Between the 200th and the 250th evaluation, we can see a huge drop of the
complexity according to the complexity classifier in the figure 4.9c. It was caused
by the diversification phase, or precisely, by the diversify method. The population
was diversified four times and the objective function was simplified by the simplify
method three times, see the figure 4.8. Afterwards, the inspiration criterion was
met, the objective function was modified, and the optimization continued. The
graph 4.9e shows a reduction of the total number of windows in the objective
function in this period. Nevertheless, the complexity difference was still increasing
after this temporal drop.

The graph 4.9e shows the number of windows in the objective function over
evaluations. We can deduce from it a period of the diversification phase that took
more than one evaluation. Our operators to modify the objective function can
remove at most one window and they always add one window. If the window is
not removed, the number of windows will increase, otherwise it will not change.
Therefore, the number of window cannot get lower after the inspire method. It
can only decrease by simplify method during the diversification phase.

The graph 4.9f shows the description metric values over evaluations. Values
are only shown for the evaluations, in which ITS tested the inspiration criterion. If
the value is bigger than the threshold I, the inspiration criterion was met and the
objective function was modified. The extension and the coverage factor values
are shown in 4.9g and 4.9h. If the coverage value is smaller than the removal
threshold R, one window may have been removed from the objective function.

The graph 4.10a shows a number of neurons in neural networks of individ-
uals. We can see that NEAT continuously complexifies neural networks. The
graph 4.10b shows relaxed symmetry, that was used as feature function by ITS,
over evaluations.

0 50 100 150 200 250 300 350 400 450
Evaluations

0

10

20

30

40

50

60

70

Nu
m
be

r o
f n

eu
ro
ns

(a) Number of neurons in individuals

0 50 100 150 200 250 300 350 400 450
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
va

lu
e

Relaxed symmetry

Best individual
Average

(b) Feature function used by ITS

Figure 4.10: Additional information about the selected run of ITS over evalua-
tions. The bottom and the top of error bars are the 25th and the 75th percentiles.

49

4.3 Selected runs

In this section, we describe different behaviours of several selected runs. We use
the knowledge built in the previous section, namely, the visual representation of
operations in ITS, graphs and their meaning. To recall, I denotes the inspiration
threshold in the inspiration criterion, and R denotes the removal threshold to
remove a window from the objective function.

4.3.1 Increase of complexity after diversification phase

The figure 4.11 shows an example where the diversification phase increased the
complexity after a temporal drop according to the complexity classifier. ITS
used global contrast factor as the feature function with the penalty, I = 0.1, and
R = 0.4. The temporal drop is the result of the diversify method. The figure 4.11c
shows that two long diversification phases started at the 172nd and at the 391st

evaluation. They also removed all windows from the objective function, see the
graph 4.11b. Nevertheless, the classification difference values were much higher
after the diversification phase in comparison with before, see the graph 4.11a.

0 50 100 150 200 250 300 350 400 450
Evaluations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(a) Classification difference values

0 50 100 150 200 250 300 350 400 450
Evaluations

0

2

4

6

8

10

Nu
m
be

r o
f w

in
do

w
s
in
 o
bj
ec

tiv
e
fu
nc

tio
n

(b) Number of windows in objective function

0 1

10

12

10

23

10

34

10

45

10

56

10

67

10

78

10

89

10

100

10

111

10

122

10

133

10

144

10

155

10

166

5

183

10

194

10

205

10

216

10

227

10

238

10

249

10

260

10

271

10

282

10

293

10

304

10

315

10

326

10

337

10

348

10

359

2

362

10

373

10

384

6

398

10

409

10

420

10

431

4

438

(c) Visualization of operations over evaluations

Figure 4.11: Information about the run of ITS where the diversification phase
increased the complexity after a temporal drop according to the complexity clas-
sifier. The bottom and the top of error bars are the 25th and the 75th percentiles.
The figure 4.7 describes the representation of the visualization of operations

50

4.3.2 No change of complexity after diversification phase

The figure 4.12 shows an example where the diversification phase did not change
the complexity too much after a temporal drop according to the complexity classi-
fier. ITS used global contrast factor as the feature function, I = 0.1, and R = 0.
All diversification phases caused a temporal drop of the complexity difference,
see the figures 4.12a and 4.12c. Afterwards, the complexity difference almost re-
turned to the same values. The run did not have the operator to remove a window
from the objective function. ITS only added windows to the objective function
until the convergence of the underlying optimization, see the figure 4.12b.

0 100 200 300 400 500
Evaluations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(a) Classification difference values

0 100 200 300 400 500
Evaluations

0

2

4

6

8

10

12

Nu
m
be

r o
f w

in
do

w
s
in
 o
bj
ec

tiv
e
fu
nc

tio
n

(b) Number of windows in objective function

0 1

10

12

10

23

10

34

10

45

10

56

10

67

10

78

10

89

10

100

10

111

2

125

10

136

10

147

10

158

10

169

10

180

10

191

10

202

10

213

10

224

10

238

10

249

10

260

10

271

10

282

10

293

10

304

5

320

10

331

10

342

10

353

10

364

10

375

10

386

10

397

10

408

10

419

10

430

8

441

10

451

(c) Visualization of operations over evaluations

Figure 4.12: Information about the run of ITS where the diversification phase
almost did not change the complexity after a temporal drop according to the
complexity classifier.

4.3.3 Increase of complexity during diversification phase

The figure 4.13 shows an example where the diversification phase increased the
complexity difference while diversifying the population. ITS used normalized
variance as the feature function, I = 0.02, and R = 0.3. The diversification
phase started in the 294th evaluation and the diversification of the population
significantly increased the complexity difference, see the rapid increase of the
average classification difference in the figure 4.13a. Afterwards, the complexity
difference dropped back to similar values as before the diversification phase.

51

0 50 100 150 200 250 300 350 400 450
Evaluations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(a) Classification difference values

0 50 100 150 200 250 300 350 400 450
Evaluations

0

1

2

3

4

5

6

Nu
m
be

r o
f w

in
do

w
s
in
 o
bj
ec

tiv
e
fu
nc

tio
n

(b) Number of windows in objective function

0 1

10

12

10

23

10

34

10

45

10

56

10

67

10

78

10

89

10

100

10

111

10

122

10

133

10

144

10

155

10

166

7

174

10

185

10

196

7

206

10

217

10

228

10

239

10

250

10

261

10

272

10

283

10

300

10

311

10

322

10

333

10

344

10

355

10

366

10

377

10

388

10

399

10

410

10

421

3

428

10

438

(c) Visualization of operations over evaluations

Figure 4.13: Information about the run of ITS where the diversification phase
increased the complexity difference while diversifying the population.

4.3.4 Importance of objective function to complexity

The performance of ITS also depends on the objective function. The change of
the objective function can possibly increase or decrease the complexity of images
according to the complexity classifier. For instance, the figure 4.14 shows one run
where this modification significantly decreased the complexity difference. ITS
used global contrast factor as the feature function with the penalty, I = 0.1, and
R = 0.4. The graph 4.14a shows a significant drop around the 300th evaluation,
but the figure 4.14c shows no diversification at that period. In the 272nd evalu-
ation, the objective function was modified and the complexity difference started
to decrease. After another modification in the 316th evaluation, the complexity
difference started to increase again.

Another example shows the figure 4.15 where the change of objective function
rapidly changed the complexity of images according to the complexity classifier.
The run used normalized variance, relaxed symmetry, and global contrast factor
as feature functions with the penalty, I = 0.1, and R = 0. The change of the
objective function in the 55th evaluation rapidly decreased the complexity differ-
ence. In the 350th evaluation, the change significantly increased the complexity
difference. This run had high value of I, therefore it was difficult to meet the
inspiration criterion. The graph 4.15b shows that ITS used at most one win-
dow and the diversification phase always removed the window from the objective
function. Furthermore, ITS used 3 feature functions and the choice of feature for
only one window had high influence on the complexity difference.

52

0 50 100 150 200 250 300 350 400 450
Evaluations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(a) Classification difference values

0 50 100 150 200 250 300 350 400 450
Evaluations

0

1

2

3

4

5

6

7

Nu
m
be

r o
f w

in
do

w
s
in
 o
bj
ec

tiv
e
fu
nc

tio
n

(b) Number of windows in objective function

0 1

10

12

10

23

10

34

10

45

10

56

10

67

10

78

10

89

10

100

10

111

10

122

10

133

10

144

10

162

10

173

10

184

10

195

10

206

10

217

10

228

10

239

10

250

10

261

10

272

10

283

10

294

10

305

10

316

10

327

10

338

7

346

10

357

10

368

10

379

10

390

10

401

10

412

10

423

10

434

10

444

(c) Visualization of operations over evaluations

Figure 4.14: Information about the run of ITS where one modification of the
objective function significantly decreased the complexity difference.

0 50 100 150 200 250 300 350 400 450
Evaluations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(a) Classification difference values

0 50 100 150 200 250 300 350 400 450
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m
be

r o
f w

in
do

w
s
in
 o
bj
ec

tiv
e
fu
nc

tio
n

(b) Number of windows in objective function

0 1

10

12

10

23

10

34

10

45

7

55

10

66

10

77

10

88

10

99

10

110

10

123

10

134

10

145

6

154

10

165

10

176

10

187

10

198

10

209

10

220

10

231

10

242

10

253

10

264

10

275

10

286

10

297

6

306

10

317

10

328

10

339

8

350

10

361

10

372

10

383

10

394

10

405

10

416

10

427

10

437

(c) Visualization of operations over evaluations

Figure 4.15: Information about the run of ITS where one modification of the
objective function significantly changed the complexity difference.

53

4.3.5 Inability to leave diversification phase

We encountered a few examples in which ITS was not able to leave the diversifi-
cation phase for a long time. For instance, the figure 4.16 shows the run with the
following setting: Tenengrad as the feature function with the penalty, I = 0.1,
and R = 0.4. The graph 4.16a shows that ITS was in the diversification phase
from the 415th to the 2184th evaluation. This is very improbable situation, be-
cause NEAT is always reset after 10 tries with an empty objective function. The
graph 4.16b shows this behaviour. The graph 4.16c shows that the population
consisted mainly of simple images the whole time according to the complexity
classifier. The inspiration criterion were not met because the description metric
values were below the threshold I, see the graph 4.16d.

0 500 1000 1500 2000 2500
Evaluations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m
be

r o
f w

in
do

w
s
in
 o
bj
ec

tiv
e
fu
nc

tio
n

(a) Number of windows in objective function

0 500 1000 1500 2000 2500
Evaluations

5

10

15

20

25

30

35

40

Nu
m
be

r o
f n

eu
ro
ns

(b) Number of neurons in individuals

0 500 1000 1500 2000 2500
Evaluations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(c) Classification difference values

0 500 1000 1500 2000 2500
Evaluations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
sc
rip

tio
n
m
et
ric

 v
al
ue

Max
Average

(d) Description metric values

Figure 4.16: Information about the run where ITS was not able to leave the
diversification phase for a long time.

4.4 Comparison

In this section, we compare ITS with different settings and with the uninspiring
search using the same set of feature functions. We can aggregate all trials of
ITS using the same setting by evaluations. Nevertheless, it is unfair to ITS,
because each run is unique. ITS contains different phases and it is influenced
by the current population and the current objective function. In the particular
evaluation, one trial may optimize by the objective function, but another trial
may diversify the population, which may result in decreasing a “complexity”

54

of images. They also differ by their objective functions and even by the total
number of windows in them. However, if we are able to show that ITS creates
“more complex” images in comparison with the uninspired search even with this
handicap, we will accomplish our goal. We can compare them by two presented
methods: the complexity test by optimization and the complexity classifier. Both
of these methods have many disadvantages. Nevertheless, they are better than
only our subjective visual comparison of produced images.

For the complexity test by optimization, we selected representative images
from both algorithms. Images from the uninspired search were chosen from the
best individuals of last generations. Images from ITS could be possibly chosen
from any evaluation. However, one trial of ITS with 40 creative cycles is on
average about 400 evaluations and each population contains at least 150 individ-
uals. Therefore, the result of one trial is 60000 images. We selected images from
the evaluations that could be considered as important. That are the evaluations
when the objective function was modified and when the optimization converged.
Additionally, we did not select too visually complex images, because we wanted
to give a chance to the direct optimization. This choice was based on our pre-
liminary experiments. Nevertheless, we will show that it probably was a mistake.
The selected images were used for the complexity test by optimization. The pixel
distances of the best individuals from last generations of all trials were aggregat-
ed. We can statistically compare the results of two algorithms by Wilcoxon rank
sum test. We will always use this test with the one sided alternative hypothe-
sis and specify the number of trials used in each data set. The algorithm with
higher values can be considered as producing more complex images. However, we
showed limitations of this test in the figure 4.1. To recall, when the pixel distance
is lower than 16000, the image is classified as simple, otherwise it is labelled as
complex image. Therefore, we also classify the algorithm by the produced images.
The problematic situation is when both algorithms produce images classified as
complex.

Each run of ITS can have a different total number of evaluations. We choose
the minimal number from the last evaluations of all trials as the evaluation for
the comparison. For the comparison by the complexity classifier, the complexity
difference values of all individuals from the previously selected evaluation of all
trials of ITS were aggregated. For uninspired search, the complexity difference
values of all individuals from the last generation of all trials were aggregated.
We can again statistically compare the results of two algorithms by Wilcoxon
rank sum test with the one sided alternative hypothesis. The algorithm with
higher values can be consider as producing more images classified as complex in
the population. The idea is that the algorithm with higher values has a higher
probability to generate an image classified as complex.

We tested the uninspired search using a set of features applied to the whole
image for 700 generations in our experiments. We found this number of gen-
erations sufficient from our preliminary experiments, in which we tested the
optimization until the stagnation for 50 generations in 10 trials. The number
of last generations were as follows: global contrast factor ∼ 453.9 ± 221.5, re-
laxed symmetry ∼ 87.2± 14.7, normalized variance ∼ 706.0± 379.6, Tenengrad
∼ 810.7 ± 284.7, choppiness ∼ 721.6 ± 335.2, and image complexity by JPEG
compression ∼ 318.6± 96.0. The generations after 700 improved the best fitness

55

value only by a little and the resulting images did not almost visually differ.
We used computers with Intel R© Xeon R© Processor E5506 (2.13 GHz) for our

experiments. Each computation used only one core, thus we are able to run many
trials in parallel on a cluster. Nevertheless, the bigger neural network the more
computationally it is to create the image and NEAT complexifies neural networks
over generations. Due to this problem, we were not able to run statistically enough
trials for everything. For instance, we only tested one image in the complexity
test by optimization in 5 trials, which is not statistically enough. On the other
hand, we gained more samples by combining the results of more images from the
tested algorithm.

4.4.1 Normalized Variance

We tested uninspired search for 12 trials (one trial ∼ 75.5 ± 4.9 hours). The
resulting images were visually very simple, see the figure 3.5 for examples. We
selected 7 images from best individuals of last generations and used them for the
complexity test by optimization in 2 trials. Additionally, we selected 2 images
based on the results, that were the most difficult to evolve, to get more statistically
significant results and tested them again for 5 trials. In the end, we used the
complexity test by optimization in 24 trials (one trial ∼ 42.0± 13.6 hours) with
2 images, each for 7 trials, and 5 images, each for 2 trials. The images were able
to be found by the optimization, therefore images produced by uninspired search
are classified as simple according to the complexity test by optimization, see the
figure 4.18. The figure 4.17a shows examples of evolved images.

Original Evolved Evolved

(a) Uninspired search

Original Evolved Evolved

(b) ITS

Figure 4.17: Examples of images used for the complexity test by optimization.
Shown evolved images are visually the most similar to the original image.

We tested ITS using the inspiration threshold I ∈ {0.01, 0.02}, and the re-
moval threshold R ∈ {0, 0.2, 0.3}. The figure 4.20a shows the influence of the
particular setting on the total number of windows in the objective function. We
tested each settings for 10 trials (1 trial ∼ 16.5 ± 9.6 hours). The figure 4.21
shows the diversity of evolved images.

56

Uninspired search
(24 trials)

ITS
(20 trials)

0

5000

10000

15000

20000

25000

Di
st
an

ce
 in

 p
ix
el
 s
pa

ce

Figure 4.18: Comparison of ITS with uninspired search by the complexity test
by optimization using normalized variance as feature function.

I=0.
01,

R=0

I=0.
01,

R=0
.2

I=0.
01,

R=0
.3

I=0.
02,

R=0

I=0.
02,

R=0
.2

I=0.
02,

R=0
.3

Unin
spire

d se
arch

−1.0

−0.5

0.0

0.5

1.0

Cl
as

si
fic

at
io
n
di
ffe

re
nc

e

Figure 4.19: Comparison of ITS with different settings and with uninspired search
by the complexity classifier using normalized variance as feature function.

We selected 4 images from all trials and used them for the complexity test by
optimization in 5 trials. The result is 20 trials (one trial ∼ 58.0±17.7 hours). The
images were not able to be found by the optimization, therefore images produced
by ITS are classified as complex according to the complexity test by optimization,
see the figure 4.18. The figure 4.17b shows examples of evolved images. We can
compare ITS with uninspired search by the best individuals from last generations,
see the figure 4.18. ITS produced significantly more complex images (p < 0.001)
according to the complexity test by optimization.

We can compare different settings of ITS by the complexity classifier, see the
figure 4.19. The removal of a window with each settings produced significantly
more complex images (p < 0.001 for each combination). We selected the set-
ting using I = 0.01, R = 0.3. ITS produced significantly more complex images
(p < 0.001) according to the complexity classifier. Figures 4.20b, 4.20c compare
the classification difference and figures 4.20d, 4.20e compare normalized variance
values of ITS with uninspired search over time.

57

0 50 100 150 200 250 300 350 400 450
Evaluations

0

2

4

6

8

10

12

14

16

18

Nu
m

be
r o

f w
in

do
w

s
in

 o
bj

ec
tiv

e
fu

nc
tio

n

Number of windows for ITS with I=0.01

R=0
R=0.2
R=0.3

0 50 100 150 200 250 300 350 400 450
Evaluations

0

2

4

6

8

10

12

Nu
m

be
r o

f w
in

do
w

s
in

 o
bj

ec
tiv

e
fu

nc
tio

n

Number of windows for ITS with I=0.02

R=0
R=0.2
R=0.3

(a) Number of windows in the objective function for different settings in ITS.

0 50 100 150 200 250 300 350 400 450
Evaluations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(b) Classification difference in ITS

0 100 200 300 400 500 600 700
Generations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(c) Classification difference in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

20

40

60

80

100

120

140

160

Fe
at
ur
e
va

lu
e

Best individual
Average

(d) Normalized varince in ITS

0 100 200 300 400 500 600 700
Generations

0

20

40

60

80

100

120

140

160

180

Fe
at
ur
e
va

lu
e

Best individual
Average

(e) Normalized varince in uninspired search

Figure 4.20: Comparison of ITS with different settings and with uninspired search
using normalized variance as feature function. Except the figure (a), ITS used
the selected setting of I = 0.01, R = 0.3.

58

[0.081, 0.919] [0.657, 0.343] [0.092, 0.908] [0.075, 0.925] [0.097, 0.903] [0.990, 0.010] [0.083, 0.917]

[0.062, 0.938] [0.057, 0.943] [0.045, 0.955] [0.063, 0.937] [0.049, 0.951] [0.052, 0.948] [0.078, 0.922]

[0.064, 0.936] [0.749, 0.251] [0.087, 0.913] [0.063, 0.937] [0.046, 0.954] [0.081, 0.919] [0.088, 0.912]

[0.050, 0.950] [0.037, 0.963] [0.091, 0.909] [0.089, 0.911] [0.097, 0.903] [0.089, 0.911] [0.085, 0.915]

[0.078, 0.922] [0.054, 0.946] [0.067, 0.933] [0.056, 0.944] [0.068, 0.932] [0.042, 0.958] [0.100, 0.900]

[0.068, 0.932] [0.076, 0.924] [0.045, 0.955] [0.533, 0.467] [0.061, 0.939] [0.092, 0.908] [0.071, 0.929]

[0.075, 0.925] [0.048, 0.952] [0.080, 0.920] [0.450, 0.550] [0.098, 0.902] [0.054, 0.946] [0.069, 0.931]

[0.051, 0.949] [0.068, 0.932] [0.058, 0.942] [0.071, 0.929] [0.073, 0.927] [0.098, 0.902] [0.067, 0.933]

[0.075, 0.925] [0.075, 0.925] [0.068, 0.932] [0.081, 0.919] [0.070, 0.930] [0.100, 0.900] [0.091, 0.909]

Figure 4.21: Examples of images found by ITS using normalized variance as
feature function with their complexity classifications according to the complexity
classifier. The classification consists of the simplicity and the complexity node.

59

4.4.2 Relaxed symmetry

We tested uninspired search for 15 trials (one trial ∼ 188.9 ± 32.2 hours). The
generated images were visually very simple, see the figure 3.4 for examples. We
selected 10 images from best individuals of last generations and used them for the
complexity test by optimization in 2 trials. Additionally, we selected 2 images
based on the results, that were the most difficult to evolve, to get more statistically
significant results and tested them again for 5 trials. In the end, we used the
complexity test by optimization in 30 trials (one trial ∼ 36.6± 10.8 hours) with
2 images, each for 7 trials, and 8 images, each for 2 trials. The images were able
to be found by the optimization, therefore images produced by uninspired search
are classified as simple according to the complexity test by optimization, see the
figure 4.23. The figure 4.22a shows examples of evolved images.

Original Evolved Evolved

(a) Uninspired search

Original Evolved Evolved

(b) ITS

Figure 4.22: Examples of images used for the complexity test by optimization.
Shown evolved images are visually the most similar to the original image.

We tested ITS using the inspiration threshold I ∈ {0.01, 0.02}, and the re-
moval threshold R ∈ {0, 0.3, 0.4}. The figure 4.25a shows the influence of the
particular setting on the total number of windows in the objective function. We
tested each settings for 10 trials (1 trial ∼ 17.0 ± 8.8 hours). The figure 4.26
shows the diversity of evolved images.

We selected 3 images from all trials and used them for the complexity test by
optimization in 5 trials. The result is 15 trials (one trial ∼ 55.0±12.9 hours). The
images were not able to be found by the optimization, therefore images produced
by ITS are classified as complex according to the complexity test by optimization,
see the figure 4.23. The figure 4.22b shows examples of evolved images. We can
compare ITS with uninspired search by the best individuals from last generations,
see the figure 4.23. ITS produced significantly more complex images (p < 0.001)
according to the complexity test by optimization.

We can compare the different settings by the complexity classifier, see the
figure 4.24. The removal of a window with each settings produced significantly
more complex images (p < 0.001 for each combination). We selected the setting
using I = 0.01, R = 0.4 ITS produced significantly more complex images (p <

60

0.001) according to the complexity classifier. Figures 4.25b, 4.25c compare the
classification difference and figures 4.25d, 4.25e compare relaxed symmetry values
of ITS with uninspired search over time.

Uninspired search
(30 trials)

ITS
(15 trials)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Di
st
an

ce
 in

 p
ix
el
 s
pa

ce

Figure 4.23: Comparison of ITS with uninspired search by the complexity test
by optimization using relaxed symmetry as feature function.

I=0.
01,

R=0

I=0.
01,

R=0
.3

I=0.
01,

R=0
.4

I=0.
02,

R=0

I=0.
02,

R=0
.3

I=0.
02,

R=0
.4

Unin
spire

d se
arch

−1.0

−0.5

0.0

0.5

1.0

Cl
as

si
fic

at
io
n
di
ffe

re
nc

e

Figure 4.24: Comparison of ITS with different settings and with uninspired search
by the complexity classifier using relaxed symmetry as feature function.

61

0 50 100 150 200 250 300 350 400 450
Evaluations

0

5

10

15

20

Nu
m
be

r o
f w

in
do

w
s
in
 o
bj
ec
tiv

e
fu
nc
tio

n

Number of windows for ITS with I=0.01

R=0
R=0.3
R=0.4

0 50 100 150 200 250 300 350 400 450
Evaluations

0

5

10

15

20

Nu
m
be

r o
f w

in
do

w
s
in
 o
bj
ec
tiv

e
fu
nc
tio

n

Number of windows for ITS with I=0.02

R=0
R=0.3
R=0.4

(a) Number of windows in the objective function for different settings in ITS.

0 50 100 150 200 250 300 350 400 450
Evaluations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(b) Classification difference in ITS

0 100 200 300 400 500 600 700
Generations

−1.0

−0.5

0.0

0.5

1.0
Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(c) Classification difference in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
va

lu
e

Best individual
Average

(d) Relaxed symmetry in ITS

0 100 200 300 400 500 600 700
Generations

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
va

lu
e

Best individual
Average

(e) Relaxed symmetry in uninspired search

Figure 4.25: Comparison of ITS with different settings and with uninspired search
using relaxed symmetry as feature function. Except the figure (a), ITS used the
selected setting of I = 0.01, R = 0.4.

62

[0.054, 0.946] [0.067, 0.933] [0.068, 0.932] [0.059, 0.941] [0.077, 0.923] [0.069, 0.931] [0.062, 0.938]

[0.091, 0.909] [0.071, 0.929] [0.081, 0.919] [0.089, 0.911] [0.072, 0.928] [0.091, 0.909] [0.082, 0.918]

[0.076, 0.924] [0.052, 0.948] [0.064, 0.936] [0.096, 0.904] [0.068, 0.932] [0.071, 0.929] [0.070, 0.930]

[0.059, 0.941] [0.041, 0.959] [0.077, 0.923] [0.033, 0.967] [0.040, 0.960] [0.065, 0.935] [0.061, 0.939]

[0.050, 0.950] [0.036, 0.964] [0.077, 0.923] [0.061, 0.939] [0.037, 0.963] [0.052, 0.948] [0.080, 0.920]

[0.070, 0.930] [0.073, 0.927] [0.057, 0.943] [0.090, 0.910] [0.082, 0.918] [0.047, 0.953] [0.078, 0.922]

[0.080, 0.920] [0.090, 0.910] [0.089, 0.911] [0.100, 0.900] [0.097, 0.903] [0.085, 0.915] [0.060, 0.940]

[0.073, 0.927] [0.096, 0.904] [0.060, 0.940] [0.080, 0.920] [0.065, 0.935] [0.096, 0.904] [0.091, 0.909]

[0.047, 0.953] [0.061, 0.939] [0.094, 0.906] [0.037, 0.963] [0.088, 0.912] [0.065, 0.935] [0.071, 0.929]

Figure 4.26: Examples of images found by ITS using relaxed symmetry as fea-
ture function with their complexity classifications according to the complexity
classifier. The classification consists of the simplicity and the complexity node.

63

4.4.3 Global contrast factor

We tested uninspired search for 10 trials. The generated images were visually
very simple, see the figure 3.3 for examples. We selected 10 images from best
individuals of last generations and used them for the complexity test by opti-
mization in 2 trials. Additionally, we selected 1 image based on the results, that
was the most difficult to evolve, to get more statistically significant results and
tested it again for 5 trials. The result is 25 trial (one trial ∼ 57.8 ± 15.7 hours)
with 1 image for 7 trials, and 9 images, each for 2 trials. Due to the problem of
high spacial frequencies, we also tested uninspired search with the penalty for 5
trials (one trial ∼ 63.6± 11.5 hours). The generated images were again visually
simple, see the figure 4.27 for examples. We selected 5 images for the complex-
ity test. The result is 15 trials (one trial ∼ 64.0 ± 15.5 hours) with 5 images,
each for 3 trials. The images from both settings were not able to be found by
the optimization, therefore images produced by uninspired search are classified
as complex according to the complexity test by optimization, see the figure 4.29.
The figures 4.28a and 4.28b show examples of evolved images.

[0.937, 0.063] [0.994, 0.006] [0.994, 0.006] [0.983, 0.017] [0.997, 0.003]

Figure 4.27: Examples of images found by uninspired search using global contrast
factor as feature function with the penalty with their complexity classifications
according to the complexity classifier. Examples of images found without the
penalty are shown in the figure 3.3.

Original Evolved Evolved

(a) Uninspired search

Original Evolved Evolved

(b) Uninspired search with the penalty

Original Evolved Evolved

(c) ITS

Figure 4.28: Examples of images used for the complexity test by optimization.
Shown evolved images are visually the most similar to the original image.

We tested ITS using the inspiration threshold I = 0.1, the removal threshold
R ∈ {0, 0.4, 0.5}, and with and without the penalty. The figure 4.30a shows the
influence of the particular setting on the total number of windows in the objective
function. We tested each settings for 10 trials (1 trial ∼ 15.7 ± 4.3 hours). The
figure 4.31 shows the diversity of evolved images.

64

Uninspired search
(25 trials)

Uninspired search
with penalty
(15 trials)

ITS
(15 trials)

14000

16000

18000

20000

22000

24000

26000

Di
st
an

ce
 in

 p
ix
el
 s
pa

ce

Figure 4.29: Comparison of ITS with uninspired search by the complexity test
by optimization using global contrast factor as feature function.

We selected 3 images from all trials and used them for the complexity test by
optimization in 5 trials. The result is 15 trials (one trial ∼ 56.8 ± 18.7 hours).
The images were not able to be found by the optimization, therefore images
produced by ITS are classified as complex according to the complexity test by
optimization, see the figure 4.29. The figure 4.28c shows examples of evolved
images. We can compare ITS with uninspired search by the best individuals
from last generations, see the figure 4.29. Uninspired search with and without
the penalty produced more complex images (p < 0.001 for both) according to
the complexity test by optimization. However, both of them produced complex
images according to the complexity test. This is the case, where the complexity
test does not work. The images produced by uninspired search are subjectively
more simple and we think they are from the class II or IV (see the figure 4.2).

We selected the setting using I = 0.1, R = 0.4 and with the penalty in order
to compare it with uninspired search, which also used the penalty. The result
is not conclusive (p = 0.164). We cannot reject hypothesis that both of them
produced images of the same complexity according to the complexity classifier.
Nevertheless, we find images from ITS visually more interesting, compare the
figure 4.31 with the figure 4.27. Figures 4.30b, 4.30c compare the classification
difference, figures 4.30d, 4.30e compare global contrast factor values, and figures
4.30f, 4.30g compare penalty values of ITS with uninspired search over time.

65

0 50 100 150 200 250 300 350 400 450
Evaluations

0

2

4

6

8

10

12

14

Nu
m
be

r o
f w

in
do

w
s
in
 o
bj
ec

tiv
e
fu
nc

tio
n

Number of windows for ITS without the penalty

R=0
R=0.4
R=0.5

0 50 100 150 200 250 300 350 400 450
Evaluations

0

2

4

6

8

10

12

14

Nu
m
be

r o
f w

in
do

w
s
in
 o
bj
ec

tiv
e
fu
nc

tio
n

Number of windows for ITS with the penalty

R=0
R=0.4
R=0.5

(a) Number of windows in the objective function for different settings in ITS.

0 50 100 150 200 250 300 350 400 450
Evaluations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(b) Classification difference in ITS

0 100 200 300 400 500 600 700
Generations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(c) Classification difference in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

0

5

10

15

20

25

Fe
at
ur
e
va

lu
e

Best individual
Average

(d) Global contrast factor in ITS

0 100 200 300 400 500 600 700
Generations

0

5

10

15

20

25

30

Fe
at
ur
e
va

lu
e

Best individual
Average

(e) Global contrast factor in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

0.75

0.80

0.85

0.90

0.95

1.00

Pe
na

lty
 v
al
ue

Best individual
Average

(f) Penalty in ITS

0 100 200 300 400 500 600 700
Generations

0.80

0.85

0.90

0.95

1.00

Pe
na

lty
 v
al
ue

Best individual
Average

(g) Penalty in uninspired search

Figure 4.30: Comparison of ITS using I = 0.1, R = 0.4 with uninspired search
using global contrast factor as feature function with the penalty.

66

[0.086, 0.914] [0.058, 0.942] [0.081, 0.919] [0.054, 0.946] [0.086, 0.914] [0.086, 0.914] [0.054, 0.946]

[0.083, 0.917] [0.077, 0.923] [0.100, 0.900] [0.082, 0.918] [0.049, 0.951] [0.069, 0.931] [0.065, 0.935]

[0.096, 0.904] [0.089, 0.911] [0.073, 0.927] [0.082, 0.918] [0.078, 0.922] [0.096, 0.904] [0.081, 0.919]

[0.090, 0.910] [0.069, 0.931] [0.080, 0.920] [0.098, 0.902] [0.037, 0.963] [0.090, 0.910] [0.089, 0.911]

[0.066, 0.934] [0.094, 0.906] [0.080, 0.920] [0.091, 0.909] [0.093, 0.907] [0.094, 0.906] [0.069, 0.931]

[0.062, 0.938] [0.087, 0.913] [0.063, 0.937] [0.087, 0.913] [0.048, 0.952] [0.090, 0.910] [0.084, 0.916]

[0.053, 0.947] [0.088, 0.912] [0.090, 0.910] [0.050, 0.950] [0.065, 0.935] [0.097, 0.903] [0.070, 0.930]

[0.055, 0.945] [0.052, 0.948] [0.097, 0.903] [0.094, 0.906] [0.087, 0.913] [0.061, 0.939] [0.077, 0.923]

Figure 4.31: Examples of images found by ITS with global contrast factor as
feature function with their complexity classifications according to the complexity
classifier. The classification consists of the simplicity and the complexity node.

67

I=0.
1, R

=0

I=0.
1, R

=0

pen
altyI=0.

1, R
=0.4

I=0.
1, R

=0.4

pen
altyI=0.

1, R
=0.5

I=0.
1, R

=0.5

pen
alty
Unin

spire
d se

arch

with
 pen

alty

−1.0

−0.5

0.0

0.5

1.0

Cl
as

si
fic

at
io
n
di
ffe

re
nc

e

Figure 4.32: Comparison of ITS with different settings and with uninspired search
by the complexity classifier using global contrast factor as feature function.

4.4.4 Tenengrad

We tested uninspired search with the penalty for 5 trials (one trial ∼ 65.1± 17.3
hours). The generated images were visually simple, see the figure 4.33 for exam-
ples with the penalty and compare with the figure 3.6 for examples without the
penalty. We selected 5 images for the complexity test by optimization. The result
is 15 trials (one trial ∼ 58.3 ± 17.8 hours) with 5 images, each for 3 trials. The
images were not able to be found by the optimization, therefore images produced
by uninspired search are classified as complex according to the complexity test
by optimization, see the figure 4.35. The figure 4.34a shows examples of evolved
images.

We tested ITS using the inspiration threshold I = 0.04, the removal threshold
R ∈ {0, 0.4}, and with and without the penalty. The figure 4.36a shows the
influence of the particular setting on the total number of windows in the objective
function. We tested each settings for 10 trials (1 trial ∼ 18.4± 14.4 hours). The

[0.950, 0.050] [0.933, 0.067] [0.947, 0.053] [0.893, 0.107] [0.918, 0.082]

Figure 4.33: Examples of images found by uninspired search using Tenengrad as
feature function with the penalty with their complexity classifications according
to the complexity classifier. Examples of images found without the penalty are
shown in the figure 3.6.

68

Original Evolved Evolved

(a) Uninspired search with the penalty

Original Evolved Evolved

(b) ITS

Figure 4.34: Examples of images used for the complexity test by optimization.
Shown evolved images are visually the most similar to the original image.

figure 4.37 shows the diversity of evolved images.
We selected 3 images from all trials and used them for the complexity test by

optimization in 5 trials. The result is 15 trials (one trial ∼ 50.5±16.8 hours). The
images were not able to be found by the optimization, therefore images produced
by ITS are classified as complex according to the complexity test by optimization,
see the figure 4.35. The figure 4.34b shows examples of evolved images. We can
compare ITS with uninspired search by the best individuals from last generations,
see the figure 4.35. Uninspired search with the penalty produced more complex
images (p < 0.001) according to the complexity test by optimization. This is the
same situation as using global contrast factor as feature function.

We selected the setting using I = 0.04, R = 0.4 and with the penalty in order
to compare it with uninspired search which also used the penalty. The result
is not conclusive (p = 0.4916). We cannot reject hypothesis that both of them
produced images of the same complexity according to the complexity classifier.
Nevertheless, we find images from ITS visually more interesting, compare the
figure 4.37 with the figure 4.33. Figures 4.36b, 4.36c compare the classification
difference, figures 4.36d, 4.36e compare Tenengrad values, and figures 4.36f, 4.36g
compare penalty values of ITS with uninspired search over time.

Uninspired search
with penalty
(15 trials)

ITS
(15 trials)

15000

16000

17000

18000

19000

20000

21000

22000

Di
st
an

ce
 in

 p
ix
el
 s
pa

ce

Figure 4.35: Comparison of ITS with uninspired search by the complexity test
by optimization using Tenengrad as feature function.

69

0 50 100 150 200 250 300 350 400 450
Evaluations

0

2

4

6

8

10

12

14

Nu
m
be

r o
f w

in
do

w
s
in
 o
bj
ec

tiv
e
fu
nc

tio
n

Number of windows for ITS without the penalty

R=0
R=0.4

0 50 100 150 200 250 300 350 400 450
Evaluations

0

2

4

6

8

10

Nu
m
be

r o
f w

in
do

w
s
in
 o
bj
ec

tiv
e
fu
nc

tio
n

Number of windows for ITS with the penalty

R=0
R=0.4

(a) Number of windows in the objective function for different settings in ITS.

0 50 100 150 200 250 300 350 400 450
Evaluations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(b) Classification difference in ITS

0 100 200 300 400 500 600 700
Generations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(c) Classification difference in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

0

50000

100000

150000

200000

250000

300000

Fe
at
ur
e
va

lu
e

Best individual
Average

(d) Tenengrad in ITS

0 100 200 300 400 500 600 700
Generations

0

50000

100000

150000

200000

250000

300000

Fe
at
ur
e
va

lu
e

Best individual
Average

(e) Tenengrad in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

0.75

0.80

0.85

0.90

0.95

1.00

Pe
na

lty
 v
al
ue

Best individual
Average

(f) Penalty in ITS

0 100 200 300 400 500 600 700
Generations

0.75

0.80

0.85

0.90

0.95

1.00

Pe
na

lty
 v
al
ue

Best individual
Average

(g) Penalty in uninspired search

Figure 4.36: Comparison of ITS using I = 0.04, R = 0.4 with uninspired search
using Tenengrad as feature function with the penalty.

70

[0.082, 0.918] [0.081, 0.919] [0.096, 0.904] [0.077, 0.923] [0.059, 0.941] [0.077, 0.923] [0.076, 0.924]

[0.094, 0.906] [0.093, 0.907] [0.085, 0.915] [0.077, 0.923] [0.083, 0.917] [0.057, 0.943] [0.092, 0.908]

[0.062, 0.938] [0.100, 0.900] [0.055, 0.945] [0.097, 0.903] [0.080, 0.920] [0.058, 0.942] [0.068, 0.932]

[0.090, 0.910] [0.090, 0.910] [0.088, 0.912] [0.061, 0.939] [0.056, 0.944] [0.092, 0.908] [0.080, 0.920]

[0.098, 0.902] [0.082, 0.918] [0.056, 0.944] [0.075, 0.925] [0.077, 0.923] [0.068, 0.932] [0.062, 0.938]

[0.084, 0.916] [0.059, 0.941] [0.072, 0.928] [0.086, 0.914] [0.076, 0.924] [0.046, 0.954] [0.075, 0.925]

[0.049, 0.951] [0.100, 0.900] [0.085, 0.915] [0.100, 0.900] [0.059, 0.941] [0.080, 0.920] [0.073, 0.927]

[0.068, 0.932] [0.090, 0.910] [0.076, 0.924] [0.092, 0.908] [0.078, 0.922] [0.087, 0.913] [0.091, 0.909]

[0.097, 0.903] [0.063, 0.937] [0.076, 0.924] [0.081, 0.919] [0.074, 0.926] [0.045, 0.955] [0.090, 0.910]

Figure 4.37: Examples of images found by ITS using Tenengrad as feature func-
tion with their complexity classifications according to the complexity classifier.
The classification consists of the simplicity and the complexity node.

71

I=0.
04,

R=0

I=0.
04,

R=0

pen
alty I=0.

04,
R=0

.4

I=0.
04,

R=0
.4

pen
alty

Unin
spire

d se
arch

with
 pen

alty

−1.0

−0.5

0.0

0.5

1.0

Cl
as

si
fic

at
io
n
di
ffe

re
nc

e

Figure 4.38: Comparison of ITS with different settings and with uninspired search
by the complexity classifier Tenengrad as feature function.

4.4.5 NV+RS

We tested uninspired search using normalized variance (NV), and relaxed sym-
metry (RS) as feature functions for 6 trials (one trial ∼ 94.0± 50.7 hours). The
generated images were visually simple, see the figure 4.39 for examples. We se-
lected 3 images from best individuals and used them for the complexity test by
optimization in 3 trials. The result is 9 trials (one trial ∼ 49.9 ± 14.5 hours).
The images were able to be found by the optimization, therefore images produced
by uninspired search are classified as simple according to the complexity test by
optimization, see the figure 4.41. The figure 4.40a shows examples of evolved
images.

[0.965, 0.035] [0.677, 0.323] [0.893, 0.107] [0.941, 0.059] [0.144, 0.856] [0.975, 0.025]

Figure 4.39: Examples of images found by uninspired search using normalized
variance and relaxed symmetry as feature functions with their complexity classi-
fications according to the complexity classifier.

We tested ITS using the inspiration threshold I ∈ {0.04, 0.05}, and the re-
moval threshold R ∈ {0, 0.2, 0.3}. The figure 4.43a shows the influence of the
particular setting on the total number of windows in the objective function. We
tested each settings for 10 trials (1 trial ∼ 14.1 ± 4.6 hours). The figure 4.44
shows the diversity of evolved images.

We selected 3 images from all trials and used them for the complexity test by

72

Original Evolved Evolved

(a) Uninspired search

Original Evolved Evolved

(b) ITS

Figure 4.40: Examples of images used for the complexity test by optimization.
Shown evolved images are visually the most similar to the original image.

optimization in 5 trials. The result is 15 trials (one trial ∼ 52.2±14.7 hours). The
images were not able to be found by the optimization, therefore images produced
by ITS are classified as complex according to the complexity test by optimization,
see the figure 4.41. The figure 4.40b shows examples of evolved images. We can
compare ITS with uninspired search by the best individuals from last generations,
see the figure 4.41. ITS produced significantly more complex images (p < 0.001)
according to the complexity test by optimization.

We can compare the different settings by the complexity classifier, see the
figure 4.42. The removal of a window using I = 0.04 produced significantly
more complex images (p < 0.001 for each combination). On the contrary, the
removal of a window using I = 0.05 produced significantly less complex images
(p < 0.001 for each combination). We selected the setting using I = 0.04, R = 0.3.
ITS produced significantly more complex images (p < 0.001) according to the
complexity classifier. Figures 4.43b, 4.43c compare the classification difference,
the figures 4.43d, 4.43e and the figures 4.43f, 4.43g compare normalized variance
and relaxed symmetry values of ITS with uninspired search over time.

73

Uninspired search
(9 trials)

ITS
(15 trials)

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Di
st
an

ce
 in

 p
ix
el
 s
pa

ce

Figure 4.41: Comparison of ITS with uninspired search by the complexity test by
optimization using normalized variance and relaxed symmetry as feature func-
tions.

I=0.
04,

R=0

I=0.
04,

R=0
.1

I=0.
04,

R=0
.3

I=0.
05,

R=0

I=0.
05,

R=0
.2

I=0.
05,

R=0
.3

Unin
spire

d se
arch

−1.0

−0.5

0.0

0.5

1.0

Cl
as

si
fic

at
io
n
di
ffe

re
nc

e

Figure 4.42: Comparison of ITS with different settings and with uninspired search
by the complexity classifier using normalized variance and relaxed symmetry as
feature functions.

74

0 50 100 150 200 250 300 350 400 450
Evaluations

0

1

2

3

4

5

6

7

8

9

Nu
m

be
r o

f w
in

do
w
s

in
 o

bj
ec

tiv
e

fu
nc

tio
n

Number of windows for ITS with I=0.04

R=0
R=0.2
R=0.3

0 50 100 150 200 250 300 350 400 450
Evaluations

0

1

2

3

4

5

6

7

Nu
m

be
r o

f w
in

do
w

s
in

 o
bj

ec
tiv

e
fu

nc
tio

n

Number of windows for ITS with I=0.05

R=0
R=0.2
R=0.3

(a) Number of windows in the objective function for different settings in ITS.

0 50 100 150 200 250 300 350 400 450
Evaluations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(b) Classification difference in ITS

0 100 200 300 400 500 600 700
Generations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(c) Classification difference in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

0

20

40

60

80

100

Fe
at
ur
e
va

lu
e

Best individual
Average

(d) Normalized variance in ITS

0 100 200 300 400 500 600 700
Generations

0

50

100

150

200

Fe
at
ur
e
va

lu
e

Best individual
Average

(e) Normalized variance in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
va

lu
e

Best individual
Average

(f) Relaxed symmetry in ITS

0 100 200 300 400 500 600 700
Generations

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
va

lu
e

Best individual
Average

(g) Relaxed symmetry in uninspired search

Figure 4.43: Comparison of ITS using I = 0.04, R = 0.3 with uninspired search
using normalized variance and relaxed symmetry as feature functions.

75

[0.064, 0.936] [0.058, 0.942] [0.074, 0.926] [0.073, 0.927] [0.070, 0.930] [0.046, 0.954] [0.090, 0.910]

[0.064, 0.936] [0.068, 0.932] [0.466, 0.534] [0.042, 0.958] [0.059, 0.941] [0.099, 0.901] [0.077, 0.923]

[0.068, 0.932] [0.063, 0.937] [0.095, 0.905] [0.090, 0.910] [0.505, 0.495] [0.083, 0.917] [0.086, 0.914]

[0.066, 0.934] [0.071, 0.929] [0.074, 0.926] [0.089, 0.911] [0.097, 0.903] [0.094, 0.906] [0.047, 0.953]

[0.093, 0.907] [0.074, 0.926] [0.073, 0.927] [0.042, 0.958] [0.089, 0.911] [0.070, 0.930] [0.062, 0.938]

[0.064, 0.936] [0.065, 0.935] [0.063, 0.937] [0.097, 0.903] [0.076, 0.924] [0.090, 0.910] [0.076, 0.924]

[0.096, 0.904] [0.037, 0.963] [0.085, 0.915] [0.070, 0.930] [0.054, 0.946] [0.069, 0.931] [0.054, 0.946]

[0.039, 0.961] [0.079, 0.921] [0.076, 0.924] [0.097, 0.903] [0.071, 0.929] [0.047, 0.953] [0.205, 0.795]

[0.096, 0.904] [0.085, 0.915] [0.077, 0.923] [0.093, 0.907] [0.074, 0.926] [0.079, 0.921] [0.062, 0.938]

Figure 4.44: Examples of images found by ITS using normalized variance and
relaxed symmetry as feature functions with their complexity classifications ac-
cording to the complexity classifier. The classification consists of the simplicity
and the complexity node.

76

4.4.6 NV+RS+T

We tested uninspired search using normalized variance (NV), relaxed symme-
try (RS), and Tenengrad (T) as feature functions with the penalty for 7 trials
(one trial ∼ 131.3± 46.6 hours). The generated images were visually simple, see
the figure 4.45 for examples. We selected 3 images from best individuals and
used them for the complexity test by optimization in 3 trials. The result is 9
trials (one trial ∼ 49.9 ± 14.5 hours). The images were not able to be found by
the optimization, therefore images produced by uninspired search are classified as
complex according to the complexity test by optimization, see the figure 4.46b.
The figure 4.46a shows examples of evolved images.

[0.944, 0.056] [0.961, 0.039] [0.797, 0.203] [0.262, 0.738] [0.953, 0.047] [0.939, 0.061] [0.961, 0.039]

Figure 4.45: Examples of images found by uninspired search using normalized
variance, relaxed symmetry, and Tenengrad as feature functions with the penalty
with their complexity classifications according to the complexity classifier.

Original Evolved Evolved Evolved

(a) Images used for the complexity test

Uninspired search
with penalty
(9 trials)

20000

21000

22000

23000

24000

25000

26000

Di
st
an

ce
 in

 p
ix
el
 s
pa

ce

(b) Complexity test

Figure 4.46: Uninspired search in the complexity test by optimization using nor-
malized variance, relaxed symmetry, and Tenengrad as feature functions with the
penalty.

We tested ITS using the inspiration threshold I ∈ {0.04, 0.1}, the removal
threshold R ∈ {0, 0.4, 0.5}, and with and without the penalty. We tested each
settings for 10 trials (1 trial ∼ 15.7 ± 5.8 hours). The figure 4.50 shows the
diversity of evolved images.

We did not test ITS by the complexity test by optimization. We believe that
images produced by ITS would be classified as complex, therefore we did not
spend computational power on it. This belief is based on the results from ITS
using only one feature function.

77

We selected the setting using I = 0.1, R = 0.5 and with the penalty in order
to compare it with uninspired search which also used the penalty. Uninspired
search produced more complex images (p = 0.017) according to the complexity
classifier, see the figure 4.47. Nevertheless, we find images from ITS visually
more interesting, compare the figure 4.50 with the figure 4.45. The figure 4.48
compares their classification difference and the figure 4.49 compares their features
and penalty values over time.

I=0.
04,

R=0

pen
alty I=0.

04,
R=0

.4

pen
alty I=0.

1, R
=0

pen
alty I=0.

1, R
=0.4

pen
alty I=0.

1, R
=0.5

pen
alty

Unin
spire

d se
arch

with
 pen

alty

−1.0

−0.5

0.0

0.5

1.0

Cl
as

si
fic

at
io
n
di
ffe

re
nc

e

Figure 4.47: Comparison of ITS with different settings and with uninspired search
by the complexity classifier using normalized variance, relaxed symmetry, and
Tenengrad as feature functions.

0 50 100 150 200 250 300 350 400 450
Evaluations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(a) Classification difference in ITS

0 100 200 300 400 500 600 700
Generations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(b) Classification difference in uninspired search

Figure 4.48: Comparison of ITS using I = 0.1, R = 0.5 with uninspired search
using normalized variance, relaxed symmetry, and Tenengrad as feature functions
with the penalty.

78

0 50 100 150 200 250 300 350 400 450
Evaluations

10

20

30

40

50

60

70

Fe
at
ur
e
va

lu
e

Best individual
Average

(a) Normalized variance in ITS

0 100 200 300 400 500 600 700
Generations

0

20

40

60

80

100

120

Fe
at
ur
e
va

lu
e

Best individual
Average

(b) Normalized variance in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
va

lu
e

Best individual
Average

(c) Relaxed symmetry in ITS

0 100 200 300 400 500 600 700
Generations

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
va

lu
e

Best individual
Average

(d) Relaxed symmetry in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

0

50000

100000

150000

200000

250000

Fe
at
ur
e
va

lu
e

Best individual
Average

(e) Tenengrad in ITS

0 100 200 300 400 500 600 700
Generations

0

50000

100000

150000

200000

250000

300000

Fe
at
ur
e
va

lu
e

Best individual
Average

(f) Tenengrad in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

0.75

0.80

0.85

0.90

0.95

1.00

Pe
na

lty
 v
al
ue

Best individual
Average

(g) Penalty in ITS

0 100 200 300 400 500 600 700
Generations

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
na

lty
 v
al
ue

Best individual
Average

(h) Penalty in uninspired search

Figure 4.49: Comparison of ITS using I = 0.1, R = 0.5 with uninspired search
using normalized variance, relaxed symmetry, and Tenengrad as feature functions
with the penalty.

79

[0.055, 0.945] [0.060, 0.940] [0.058, 0.942] [0.073, 0.927] [0.092, 0.908] [0.098, 0.902] [0.054, 0.946]

[0.044, 0.956] [0.089, 0.911] [0.070, 0.930] [0.075, 0.925] [0.098, 0.902] [0.071, 0.929] [0.064, 0.936]

[0.090, 0.910] [0.093, 0.907] [0.069, 0.931] [0.079, 0.921] [0.092, 0.908] [0.060, 0.940] [0.090, 0.910]

[0.062, 0.938] [0.099, 0.901] [0.082, 0.918] [0.059, 0.941] [0.084, 0.916] [0.083, 0.917] [0.093, 0.907]

[0.072, 0.928] [0.090, 0.910] [0.098, 0.902] [0.060, 0.940] [0.059, 0.941] [0.072, 0.928] [0.055, 0.945]

[0.099, 0.901] [0.089, 0.911] [0.064, 0.936] [0.094, 0.906] [0.085, 0.915] [0.049, 0.951] [0.094, 0.906]

[0.081, 0.919] [0.096, 0.904] [0.056, 0.944] [0.072, 0.928] [0.097, 0.903] [0.097, 0.903] [0.051, 0.949]

[0.086, 0.914] [0.099, 0.901] [0.073, 0.927] [0.073, 0.927] [0.098, 0.902] [0.048, 0.952] [0.061, 0.939]

[0.087, 0.913] [0.075, 0.925] [0.075, 0.925] [0.050, 0.950] [0.076, 0.924] [0.051, 0.949] [0.067, 0.933]

Figure 4.50: Examples of images found by ITS using normalized variance, relaxed
symmetry, and Tenengrad as feature functions with their complexity classifica-
tions according to the complexity classifier. The classification consists of the
simplicity and the complexity node.

80

4.4.7 NV+RS+GCF

We tested uninspired search using normalized variance (NV), relaxed symme-
try (RS), and global contrast factor (GCF) as feature functions with the penalty
for 3 trials (one trial ∼ 215.5± 21.6 hours). The generated images were visually
simple, see the figure 4.51 for examples. We selected 3 images from best indi-
viduals and used them for the complexity test by optimization in 3 trials. The
result is 9 trials (one trial ∼ 53.7± 10.6 hours). The images were not able to be
found by the optimization, therefore images produced by uninspired search are
classified as complex according to the complexity test by optimization, see the
figure 4.52b. The figure 4.52a shows examples of evolved images.

[0.981, 0.019] [0.899, 0.101] [0.710, 0.290]

Figure 4.51: Examples of images found by uninspired search using normalized
variance, relaxed symmetry, and global contrast factor as feature functions with
the penalty with their complexity classifications according to the complexity clas-
sifier.

Original Evolved Evolved Evolved

(a) Images used for the complexity test

Uninspired search
with penalty
(9 trials)

12000

14000

16000

18000

20000

22000

24000

26000

28000

Di
st
an

ce
 in

 p
ix
el
 s
pa

ce

(b) Complexity test

Figure 4.52: Uninspired search in the complexity test by optimization using nor-
malized variance, relaxed symmetry, and global contrast factor as feature func-
tions with the penalty.

We tested ITS using the inspiration threshold I ∈ {0.04, 0.1}, the removal
threshold R ∈ {0, 0.4, 0.5}, and with and without the penalty. We tested each
settings for 10 trials (1 trial ∼ 16.7 ± 9.7 hours). The figure 4.56 shows the
diversity of evolved images.

We did not test ITS by the complexity test by optimization. We believe that
images produced by ITS would be classified as complex, therefore we did not
spend computational power on it. This belief is based on the results from ITS
using only one feature function.

81

We selected the setting using I = 0.04, R = 0 and with the penalty in order to
compare it with uninspired search which also used the penalty. Uninspired search
produced significantly more complex images (p < 0.001 for any combination)
according to the complexity classifier, see the figure 4.53. Nevertheless, we find
images from ITS visually more interesting, compare the figure 4.56 with the figure
4.51. The figure 4.54 compares their classification difference and the figure 4.55
compares their features and penalty values over time.

I=0.
04,

R=0

I=0.
04,

R=0

pen
alty I=0.

04,
R=0

.4

I=0.
04,

R=0
.4

pen
alty I=0.

1, R
=0

Unin
spire

d se
arch

with
 pen

alty

−1.0

−0.5

0.0

0.5

1.0

Cl
as

si
fic

at
io
n
di
ffe

re
nc

e

Figure 4.53: Comparison of ITS with different settings and with uninspired search
by the complexity classifier using normalized variance, relaxed symmetry, and
global contrast factor as feature functions.

0 50 100 150 200 250 300 350 400 450
Evaluations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(a) Classification difference in ITS

0 100 200 300 400 500 600 700
Generations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(b) Classification difference in uninspired search

Figure 4.54: Comparison of ITS using I = 0.04, R = 0 with uninspired search
using normalized variance, relaxed symmetry, and global contrast factor as feature
functions with the penalty.

82

0 50 100 150 200 250 300 350 400 450
Evaluations

20

40

60

80

100

Fe
at
ur
e
va

lu
e

Best individual
Average

(a) Normalized variance in ITS

0 100 200 300 400 500 600 700
Generations

0

20

40

60

80

100

120

140

Fe
at
ur
e
va

lu
e

Best individual
Average

(b) Normalized variance in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
va

lu
e

Best individual
Average

(c) Relaxed symmetry in ITS

0 100 200 300 400 500 600 700
Generations

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
va

lu
e

Best individual
Average

(d) Relaxed symmetry in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

0

5

10

15

20

25

Fe
at
ur
e
va

lu
e

Best individual
Average

(e) Global contrast factor in ITS

0 100 200 300 400 500 600 700
Generations

0

5

10

15

20

Fe
at
ur
e
va

lu
e

Best individual
Average

(f) Global contrast factor in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Pe
na

lty
 v
al
ue

Best individual
Average

(g) Penalty in ITS

0 100 200 300 400 500 600 700
Generations

0.85

0.90

0.95

1.00

Pe
na

lty
 v
al
ue

Best individual
Average

(h) Penalty in uninspired search

Figure 4.55: Comparison of ITS using I = 0.04, R = 0 with uninspired search
using normalized variance, relaxed symmetry, and global contrast factor as feature
functions with the penalty.

83

[0.064, 0.936] [0.091, 0.909] [0.082, 0.918] [0.075, 0.925] [0.071, 0.929] [0.088, 0.912] [0.066, 0.934]

[0.091, 0.909] [0.098, 0.902] [0.093, 0.907] [0.086, 0.914] [0.083, 0.917] [0.084, 0.916] [0.083, 0.917]

[0.096, 0.904] [0.099, 0.901] [0.070, 0.930] [0.080, 0.920] [0.059, 0.941] [0.088, 0.912] [0.082, 0.918]

[0.070, 0.930] [0.093, 0.907] [0.079, 0.921] [0.079, 0.921] [0.063, 0.937] [0.063, 0.937] [0.066, 0.934]

[0.071, 0.929] [0.070, 0.930] [0.056, 0.944] [0.069, 0.931] [0.075, 0.925] [0.070, 0.930] [0.078, 0.922]

[0.060, 0.940] [0.094, 0.906] [0.087, 0.913] [0.098, 0.902] [0.089, 0.911] [0.083, 0.917] [0.078, 0.922]

[0.078, 0.922] [0.085, 0.915] [0.046, 0.954] [0.071, 0.929] [0.093, 0.907] [0.079, 0.921] [0.086, 0.914]

[0.056, 0.944] [0.053, 0.947] [0.098, 0.902] [0.080, 0.920] [0.292, 0.708] [0.051, 0.949] [0.056, 0.944]

[0.049, 0.951] [0.092, 0.908] [0.076, 0.924] [0.123, 0.877] [0.089, 0.911] [0.086, 0.914] [0.069, 0.931]

Figure 4.56: Examples of images found by ITS using normalized variance, relaxed
symmetry, and global contrast factor as feature functions with their complexity
classifications according to the complexity classifier. The classification consists
of the simplicity and the complexity node.

84

4.4.8 NV+RS+GCF+T

We tested uninspired search using normalized variance (NV), relaxed symme-
try (RS), global contrast factor (GCF), and Tenengrad (T) as feature functions
with the penalty for 5 trials (one trial ∼ 122.3± 21.0 hours). The generated im-
ages were visually simple, see the figure 4.57 for examples. We selected 4 images
from best individuals and used them for the complexity test by optimization in 3
trials. The result is 12 trials (one trial ∼ 50.1±10.9 hours). The images were not
able to be found by the optimization, therefore images produced by uninspired
search are classified as complex according to the complexity test by optimization,
see the figure 4.58b. The figure 4.58a shows examples of evolved images.

[0.952, 0.048] [0.875, 0.125] [0.962, 0.038] [0.929, 0.071] [0.952, 0.048]

Figure 4.57: Examples of images found by uninspired search using normalized
variance, relaxed symmetry, global contrast factor, and Tenengrad as feature
functions with the penalty with their complexity classifications according to the
complexity classifier.

Original Evolved Evolved Evolved

(a) Images used for the complexity test

Uninspired search
with penalty
(12 trials)

19000

20000

21000

22000

23000

24000

25000

Di
st
an

ce
 in

 p
ix
el
 s
pa

ce

(b) Complexity test

Figure 4.58: Uninspired search in the complexity test by optimization using nor-
malized variance, relaxed symmetry, global contrast factor, and Tenengrad as
feature functions with the penalty.

We tested ITS using the inspiration threshold I ∈ {0.04, 0.1}, the removal
threshold R ∈ {0, 0.4, 0.5}, and with and without the penalty. We tested each
settings for 10 trials (1 trial ∼ 17.9 ± 8.2 hours). The figure 4.62 shows the
diversity of evolved images.

We did not test ITS by the complexity test by optimization. We believe that
images produced by ITS would be classified as complex, therefore we did not

85

spend computational power on it. This belief is based on the results from ITS
using only one feature function.

We selected the setting using I = 0.1, R = 0.5 and with the penalty in order to
compare it with uninspired search which also used the penalty. Uninspired search
produced significantly more complex images (p < 0.001 for any combination)
according to the complexity classifier, see the figure 4.59. Nevertheless, we find
images from ITS visually more interesting, compare the figure 4.62 with the figure
4.57. The figure 4.60 compares their classification difference and the figure 4.61
compares their features values over time.

I=0.
04,

R=0

I=0.
04,

R=0

pen
altyI=0.

04,
R=0

.4

I=0.
04,

R=0
.4

pen
altyI=0.

1, R
=0.5

I=0.
1, R

=0.5

pen
alty
Unin

spire
d se

arch

with
 pen

alty

−1.0

−0.5

0.0

0.5

1.0

Cl
as

si
fic

at
io
n
di
ffe

re
nc

e

Figure 4.59: Comparison of ITS with different settings and with uninspired search
by the complexity classifier using normalized variance, relaxed symmetry, global
contrast factor, and Tenengrad as feature functions.

0 50 100 150 200 250 300 350 400 450
Evaluations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(a) Classification difference in ITS

0 100 200 300 400 500 600 700
Generations

−1.0

−0.5

0.0

0.5

1.0

Cl
as
si
fic

at
io
n
di
ffe

re
nc

e

Max
Average
Best individual

(b) Classification difference in uninspired search

Figure 4.60: Comparison of ITS using I = 0.1, R = 0.5 with uninspired search us-
ing normalized variance, relaxed symmetry, global contrast factor, and Tenengrad
as feature functions with the penalty.

86

0 50 100 150 200 250 300 350 400 450
Evaluations

20

30

40

50

60

70

80

Fe
at
ur
e
va

lu
e

Best individual
Average

(a) Normalized variance in ITS

0 100 200 300 400 500 600 700
Generations

0

20

40

60

80

100

120

Fe
at
ur
e
va

lu
e

Best individual
Average

(b) Normalized variance in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
va

lu
e

Best individual
Average

(c) Relaxed symmetry in ITS

0 100 200 300 400 500 600 700
Generations

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
va

lu
e

Best individual
Average

(d) Relaxed symmetry in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

0

5

10

15

20

25

Fe
at
ur
e
va

lu
e

Best individual
Average

(e) Global contrast factor in ITS

0 100 200 300 400 500 600 700
Generations

0

5

10

15

20

25

Fe
at
ur
e
va

lu
e

Best individual
Average

(f) Global contrast factor in uninspired search

0 50 100 150 200 250 300 350 400 450
Evaluations

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Fe
at
ur
e
va

lu
e

Best individual
Average

(g) Tenengrad in ITS

0 100 200 300 400 500 600 700
Generations

0

50000

100000

150000

200000

250000

300000

Fe
at
ur
e
va

lu
e

Best individual
Average

(h) Tenengrad in uninspired search

Figure 4.61: Comparison of ITS using I = 0.1, R = 0.5 with uninspired search us-
ing normalized variance, relaxed symmetry, global contrast factor, and Tenengrad
as feature functions with the penalty.

87

[0.072, 0.928] [0.099, 0.901] [0.085, 0.915] [0.080, 0.920] [0.061, 0.939] [0.088, 0.912] [0.070, 0.930]

[0.067, 0.933] [0.097, 0.903] [0.041, 0.959] [0.073, 0.927] [0.080, 0.920] [0.054, 0.946] [0.067, 0.933]

[0.072, 0.928] [0.069, 0.931] [0.090, 0.910] [0.081, 0.919] [0.068, 0.932] [0.085, 0.915] [0.066, 0.934]

[0.058, 0.942] [0.080, 0.920] [0.095, 0.905] [0.100, 0.900] [0.066, 0.934] [0.069, 0.931] [0.077, 0.923]

[0.092, 0.908] [0.093, 0.907] [0.056, 0.944] [0.091, 0.909] [0.090, 0.910] [0.088, 0.912] [0.060, 0.940]

[0.090, 0.910] [0.088, 0.912] [0.097, 0.903] [0.086, 0.914] [0.071, 0.929] [0.069, 0.931] [0.051, 0.949]

[0.086, 0.914] [0.091, 0.909] [0.040, 0.960] [0.095, 0.905] [0.084, 0.916] [0.057, 0.943] [0.068, 0.932]

[0.070, 0.930] [0.070, 0.930] [0.079, 0.921] [0.087, 0.913] [0.072, 0.928] [0.097, 0.903] [0.069, 0.931]

[0.090, 0.910] [0.048, 0.952] [0.084, 0.916] [0.080, 0.920] [0.074, 0.926] [0.060, 0.940] [0.089, 0.911]

Figure 4.62: Examples of images found by ITS using normalized variance, relaxed
symmetry, global contrast factor, and Tenengrad as feature functions with their
complexity classifications according to the complexity classifier. The classification
consists of the simplicity and the complexity node.

88

4.5 Summary

In this section, we summarize the results of our evaluation. We used two methods
to compare ITS with uninspired search using the same set of feature functions:
the complexity test by optimization and the complexity classifier. We proposed
these methods to have a non-subjective measure. However, we also showed their
limitations during our evaluation. Additionally, we leave a visual comparison up
to the reader.

The table 4.1 shows a summary according to the complexity test by optimiza-
tion. The complexity of images from uninspired search is biased by the particular
feature function. Normalized variance, and relaxed symmetry produced simple
images, even when they were used together. On the contrary, global contrast fac-
tor, and Tenengrad produced complex images according to the complexity test
by optimization. When the set of features for uninspired search contained any of
the latter, the resulting images were classified as complex. We think that these
images are mainly from the class II or IV. We showed that the complexity test
classifies these classes as complex. When both algorithms produced images clas-
sified as complex, the statistical comparison is biased by the chosen images for
the complexity test.

We did not use the complexity test for the multiple features with global con-
trast factor, or Tenengrad. Nevertheless, we believe that images produced by ITS
would be classified as complex and uninspired search would statistically produce
more complex images. We base this idea on the results from using global contrast,
or Tenengrad as a single feature function.

Set of features Uninspired search Comparison ITS p-value

NV simple < complex < 0.001
RS simple < complex < 0.001
GCF complex > complex < 0.001
T complex > complex < 0.001
NV+RS simple < complex < 0.001
NV+RS+T complex 5

NV+RS+GCF complex 5

NV+RS+GCF+T complex 5

Table 4.1: Summary of the evaluation according to the complexity test by opti-
mization. Images from the particular algorithm are classified by the complexity
test. Results of comparisons are shown with corresponding p-values. NV is nor-
malized variance, RS is relaxed symmetry, GCF is global contrast factor, and T
is Tenengrad.

The table 4.2 shows a summary according to the complexity classifier. Sim-
ilarly to the complexity test by optimization, the complexity of images from
uninspired search is biased by the particular feature function. When the set of
features for uninspired search contains global contrast factor or Tenengrad, the
resulting images are more likely to be classified as complex. We think it is caused
by our data set to train a classifier. We labelled an image as complex, when it
was sharp. Images created from the latter features are mainly sharp, therefore

89

they are classified as complex according to the complexity classifier. On the other
hand, they are visually very simple according to our subjective comparison. The
problem could also be caused by the unfair aggregation of all trials by evaluations,
because each run of ITS is unique.

Set of features Uninspired search Comparison ITS p-value

NV −0.986 < −0.335 < 0.001
RS 0.353 < 0.532 < 0.001
GCF −0.112 ≈ 0.027 0.164
T −0.288 ≈ −0.213 0.491
NV+RS −0.853 < −0.048 < 0.001
NV+RS+T 0.111 > 0.101 0.017
NV+RS+GCF 0.462 > 0.113 < 0.001
NV+RS+GCF+T 0.456 > 0.170 < 0.001

Table 4.2: Summary of the evaluation according to the complexity classifier. Each
algorithm shows a median of complexity difference of produced images from all
trials. Results of comparisons are shown with corresponding p-values. NV is
normalized variance, RS is relaxed symmetry, GCF is global contrast factor, and
T is Tenengrad.

90

Conclusion

In this thesis, we investigated a different approach to deal with the trap of local
optima in stochastic optimization methods from machine learning. Our approach
was inspired by the users interacting with Picbreeder. Our hypothesis was that
their behaviours depict creative processes. These processes have no fixed goals.
We introduced a general framework on the top of a common optimization tech-
nique called inspiration-triggered search (ITS), which mimics these processes.
We tested our approach in the domain of images, that is to find “complex” and
aesthetically pleasant images for humans.

ITS generalizes the behaviour into three phases: the inspiration phase, the
optimization phase, and the diversification phase. In the inspiration phase, the
population in the optimization technique is analysed to detect “interesting or
promising” properties and a new objective function is defined. The optimization
phase represents the standard optimization using the current objective function.
The idea of the diversification phase is to add diversity to the population after the
convergence of the optimization technique. ITS diversifies the population until
something “inspiring” in the population is found. ITS can be considered as an
automated incremental approach. It can start with a simple objective function
and continuously make it more complex. For this reason, the current population
is crucial. It contains individuals that do not perform poorly for the new defined
objective function, otherwise the search would have to deal with the bootstrap
problem.

We introduced a general idea of descriptions of individuals that describe their
“good” properties. We proposed one instance in which descriptions represent
“promising” parts of individuals, that we call windows. In other words, the
original problem is split into sub-problems defined by windows. In our testing
domain of images, we defined windows by a detection of contours. The objective
function uses the same idea of windows. It is defined by a collection of windows
for each feature and the optimization technique focuses on these windows. If
an “inspiring” individual appears in the population, the objective function will
be modified by the individual’s description. We defined inspiring individuals by
high values of a user-defined description metric between the objective function
and the description of the particular individual. We proposed two basic operators
to modify the objective function: adding a new window to the objective function,
and removing an existing window from the objective function.

In our experiments, images were represented by CPPNs and we used NEAT
as the underlying optimization technique. We tested measures from the field of
computational aesthetics and measures defining a sharpness of the image. We
subjectively chose measures as features for the optimization that produced some
visual results.

We compared ITS with the underlying optimization technique using the same
set of features. The main problem was the definition of a complex image. Our
first approach was to test whether the images can be found or not by the used
optimization technique using the image as the objective function. We defined
that the image is complex when it cannot be found. However, we showed that
even visually simple images are not able to be found by this approach. Secondly,

91

we used machine learning methods to train a classifier to distinguish “simple”
and “complex” images. The problem was that sometimes we were not able to
tell whether images are complex or not. We labelled images as complex, when
they were sharp or contained more shapes. Nevertheless, some features produced
visually simple but sharp images, therefore the images were classified as complex.
This was a problem for our comparison. Even though, the produced images
were visually simple, they had high complexities according to the used classifier.
Unfortunately, none of these two methods gave us a conclusive answer whether
our proposed method produces more “complex” images or not. Nevertheless,
we found images produced by our approach that are visually and subjectively
interesting.

The resulting “complexity” of images is biased by the used feature function.
The direct optimization of normalized variance or relaxed symmetry produced
visually very simple images. For them, we were able to show that our approach
produced more “complex” images according to both of proposed methods. The
direct optimization of global contrast factor and Tenengrad still produced visually
simple images according to our subjective perspective. However, the produced
images were more complex in comparison with images produced by normalized
variance or relaxed symmetry. For them, both of used methods were not sufficient
and the results were not conclusive.

The study of complexibility is required for a deeper evaluation of our proposed
approach. This problem of “subjective complexity” is not only connected with
the domain of images. For instance, in the field of evolutionary robotics, let us
imagine we want to evolve a neural network that would allow a mobile robot to
move to a specified target. Fitness functions based only on times to get there
and lengths of trajectories do not contain the whole information about “complex-
ities” of evolved behaviours. For instance, shapes of trajectories are important as
well. However, this information is difficult to formalize. For this reason, human
operators are usually used to rate these shapes of trajectories. Such a view does
not give us much hope: if evolving simple behaviours is not straightforward, how
could we hope to employ evolution to design vastly more complex and hard to
define behaviours such as “being intelligent”?

On the other hand, we must expect that produced images are biased by the
used set of features. We should not expect that we would be able to find The
Mona Lisa painting by Leonardo da Vinci by only optimizing normalized variance.
We would need at least a feature recognizing human figures. By including creative
processes in the search, we mainly argue that the search is able to found more
“complex” solutions in comparison with the direct optimization.

Future work

We would like to compare our proposed method with similar approaches that do
not use fixed objective functions, for instance, such as novelty search.

We must more investigate the diversification phase to conclude whether our
use helps in most cases or not. We only showed that it is a double-edged sword
because it usually caused a significant temporal drop in complexity according to
the complexity classifier. Also, we need to examine other definitions of operators
to modify the objective function. For instance, we did not use an operator to

92

modify an existing window in the objective function. It could be convenient to
change a size or a position of a particular window.

Next researches should focus on combing ITS with an objective-based search
or improving an objective-based search by ITS.

Lastly, we briefly mention several ideas without concrete details that we did
not use for the presented ITS in this thesis

Dynamic size Sizes of problems from a particular domain do not have to
be fixed, for instance, resolutions of images. We could start with a minimal
size and dynamically increase or decrease the problem’s size according to the
objective function. It would represent an open-ended evolution. For instance, in
the domain of images, the size of the generated image can be defined by a margin
from windows of the objective function. If a new added window to the objective
function is close to borders, the image’s resolution will be increased. Similarly, a
removed window can decrease the image’s resolution. The idea is that artists do
not have to start with fixed sizes of their artworks. For instance, lengths of songs
are not usually defined in advance but they are more likely results of particular
ideas of music composers.

Features as properties We would like to use features for which we do not
know which value is better. In other words, a feature value only describes a
property of an individual. These features represent typical properties used by
humans. Their values are usually incomparable. For instance, let us imagine a
feature that describes usage of bass guitar in songs. Do “good” songs contain a
bass guitar? If yes, how much should it be used? There is no clear answer. We
could find “good” songs for almost any variant. This example illustrates that a
simple maximization or minimization of some properties do not make sense.

For this type of features, we could extract some information from “good”
individuals. A simple option would be to use an average feature value from these
individuals and optimize towards this value in a particular window. Additionally,
changes of the objective function could modify this value.

Multi-agent ITS One could consider that ITS evolves objective functions. In
this thesis, ITS evolved only one objective function and it could be consider as
one artist. However, we could use more artists and evolve more objective func-
tions at the same time. It would not be the same as island models [55] used in
evolutionary computation, in which separate evolutionary algorithms run inde-
pendently on each island and interact by means of migrating individuals. We
would rather migrate objective functions than individuals, or precisely, an objec-
tive function of one island could be used to modify objective functions of other
islands. The main idea is to achieve a self-organization similar to art movements
in human history. One artist finds something interesting and can influence other
artists to some extent. This behaviour represents a multi-agent system. Even,
Picbreeder used more users to create best rated images by branching. We can
draw inspiration from approaches [69, 99, 102] used in evolutionary computation
inspired by behaviours in human societies.

93

Bibliography

[1] Acebo, E ; Sbert, Mateu: Benford’s law for natural and synthetic images.
In: Proceedings of the First Eurographics conference on Computational Aes-
thetics in Graphics, Visualization and Imaging Eurographics Association,
2005, S. 169–176

[2] Alpaydin, Ethem: Introduction to Machine Learning. MIT Press, 2014

[3] Auerbach, Joshua E. ; Bongard, Josh C.: Evolving complete robots
with CPPN-NEAT: the utility of recurrent connections. In: Proceedings of
the 13th annual conference on Genetic and evolutionary computation ACM,
2011, S. 1475–1482

[4] Avnet, Jeremy: Computation, dynamics and the phase-transition. 2000

[5] Baluja, Shumeet ; Pomerleau, Dean ; Jochem, Todd: Towards auto-
mated artificial evolution for computer-generated images. In: Connection
Science 6 (1994), Nr. 2-3, S. 325–354

[6] Bear, Mark F. ; Connors, Barry W. ; Paradiso, Michael A.: Neuro-
science: Exploring the brain. 3rd. Lippincott Williams & Wilkins, 2007

[7] Bense, M: Einführung in die informationstheoretische Ästhetik. Grundle-
gung und Anwendung in der Texttheorie (Introduction to the information-
theoretical aesthetics. Foundation and application in the text theory). 1969

[8] Bentley, Peter ; Corne, David: Creative evolutionary systems. Morgan
Kaufmann, 2002

[9] Biles, John: GenJam: A genetic algorithm for generating jazz solos. In:
Proceedings of the International Computer Music Conference INTERNA-
TIONAL COMPUTER MUSIC ACCOCIATION, 1994, S. 131–131

[10] Birkhoff, George D.: Aesthetic measure. Cambridge, Mass., 1933

[11] Bradski, G.: The OpenCV Library. In: Dr. Dobb’s Journal of Software
Tools (2000)

[12] Cheney, Nick ; MacCurdy, Robert ; Clune, Jeff ; Lipson, Hod: Un-
shackling evolution: evolving soft robots with multiple materials and a pow-
erful generative encoding. In: Proceedings of the 15th annual conference on
Genetic and evolutionary computation ACM, 2013, S. 167–174

[13] Chervenski, Peter ; Ryan, Shane: MultiNEAT. http://www.multineat.
com/

[14] Clune, Jeff ; Lipson, Hod: Evolving three-dimensional objects with a
generative encoding inspired by developmental biology. In: ACM SIGEVO-
lution 5 (2011), Nr. 4, S. 2–12

[15] Colton, Simon ; Wiggins, Geraint A.: Computational creativity: the
final frontier? In: ECAI, 2012, S. 21–26

94

http://www.multineat.com/
http://www.multineat.com/

[16] Cover, Thomas M. ; Thomas, Joy A.: Elements of information theory.
John Wiley & Sons, 2012

[17] Deb, Kalyanmoy ; Pratap, Amrit ; Agarwal, Sameer ; Meyarivan,
TAMT: A fast and elitist multiobjective genetic algorithm: NSGA-II. In:
Evolutionary Computation, IEEE Transactions on 6 (2002), Nr. 2, S. 182–
197

[18] Deng, Li ; Yu, Dong: Deep learning: methods and applications. In:
Foundations and Trends in Signal Processing 7 (2014), Nr. 3–4, S. 197–387

[19] DiPaola, Steve ; Gabora, Liane: Incorporating characteristics of human
creativity into an evolutionary art algorithm. In: Genetic Programming
and Evolvable Machines 10 (2009), Nr. 2, S. 97–110

[20] Doncieux, Stephane ; Mouret, Jean-Baptiste: Beyond black-box op-
timization: a review of selective pressures for evolutionary robotics. In:
Evolutionary Intelligence 7 (2014), Nr. 2, S. 71–93

[21] Dubbin, Greg A. ; Stanley, Kenneth O.: Learning to dance through inter-
active evolution. In: Applications of Evolutionary Computation. Springer,
2010, S. 331–340

[22] Eiben, Agoston E. ; Smith, James E.: Introduction to evolutionary com-
puting. Springer Science & Business Media, 2003

[23] Elman, Jeffrey L.: Incremental learning, or the importance of starting
small. University of California, San Diego, 1991

[24] Gauci, Jason ; Stanley, Kenneth O.: Autonomous evolution of topo-
graphic regularities in artificial neural networks. In: Neural computation
22 (2010), Nr. 7, S. 1860–1898

[25] Golberg, David E.: Genetic algorithms in search, optimization, and
machine learning. In: Addion wesley 1989 (1989)

[26] Goldberg, David E.: Simple genetic algorithms and the minimal, decep-
tive problem. In: Genetic algorithms and simulated annealing 74 (1987),
S. 88

[27] Gomez, Faustino ; Miikkulainen, Risto: Incremental evolution of com-
plex general behavior. In: Adaptive Behavior 5 (1997), Nr. 3-4, S. 317–342

[28] Gomez, Faustino ; Schmidhuber, Jürgen ; Miikkulainen, Risto: Ef-
ficient non-linear control through neuroevolution. In: Machine Learning:
ECML 2006. Springer, 2006, S. 654–662

[29] Gould, Stephen J. ; Vrba, Elisabeth S.: Exaptation-a missing term in
the science of form. In: Paleobiology (1982), S. 4–15

[30] Greenfield, Gary: On the origins of the term computational aesthetics.
In: Proceedings of the First Eurographics conference on Computational Aes-
thetics in Graphics, Visualization and Imaging Eurographics Association,
2005, S. 9–12

95

[31] Hanson, N.R.: Patterns of Discovery: An Inquiry into the Conceptu-
al Foundations of Science. Cambridge University Press, 1958. – ISBN
9780521092616

[32] Hastings, Erin ; Guha, Ratan ; Stanley, Kenneth O.: Neat particles:
Design, representation, and animation of particle system effects. In: Com-
putational Intelligence and Games, 2007. CIG 2007. IEEE Symposium on
IEEE, 2007, S. 154–160

[33] Heijer, Eelco den: Evolving Art using Measures for Symmetry, Composi-
tional Balance and Liveliness. In: IJCCI, 2012, S. 52–61

[34] Heijer, Eelco den ; Eiben, AE: Using aesthetic measures to evolve art. In:
Evolutionary Computation (CEC), 2010 IEEE Congress on IEEE, 2010, S.
1–8

[35] Hoover, Amy K. ; Szerlip, Paul A. ; Norton, Marie E. ; Brindle,
Trevor A. ; Merritt, Zachary ; Stanley, Kenneth O.: Generating a
complete multipart musical composition from a single monophonic melody
with functional scaffolding. In: International Conference on Computational
Creativity, 2012, S. 111

[36] Husbands, Phil ; Jermy, Giles ; McIlhagga, Malcolm ; Ives, Robert:
Two applications of genetic algorithms to component design. In: Evolu-
tionary computing. Springer, 1996, S. 50–61

[37] Johanson, Brad ; Poli, Riccardo: GP-music: An interactive genetic
programming system for music generation with automated fitness raters.
Citeseer, 1998

[38] Johnson, Colin G.: Fitness in evolutionary art and music: what has been
used and what could be used? In: Evolutionary and Biologically Inspired
Music, Sound, Art and Design. Springer, 2012, S. 129–140

[39] Jolion, Jean-Michel: Images and Benford’s law. In: Journal of Mathe-
matical Imaging and Vision 14 (2001), Nr. 1, S. 73–81

[40] Koza, John R.: Genetic programming: on the programming of computers
by means of natural selection. Bd. 1. 1992

[41] Krčah, Peter: Solving deceptive tasks in robot body-brain co-evolution
by searching for behavioral novelty. In: Advances in Robotics and Virtual
Reality. Springer, 2012, S. 167–186

[42] Krotkov, Eric: Focusing. In: International Journal of Computer Vision
1 (1988), Nr. 3, S. 223–237

[43] Lehman, Joel ; Stanley, Kenneth O.: Exploiting Open-Endedness to
Solve Problems Through the Search for Novelty. In: ALIFE, 2008, S. 329–
336

96

[44] Lehman, Joel ; Stanley, Kenneth O.: Revising the evolutionary com-
putation abstraction: minimal criteria novelty search. In: Proceedings of
the 12th annual conference on Genetic and evolutionary computation ACM,
2010, S. 103–110

[45] Lehman, Joel ; Stanley, Kenneth O.: Abandoning objectives: Evolution
through the search for novelty alone. In: Evolutionary computation 19
(2011), Nr. 2, S. 189–223

[46] Lehman, Joel ; Stanley, Kenneth O.: Beyond open-endedness: Quanti-
fying impressiveness. In: Artificial Life Bd. 13, 2012, S. 75–82

[47] Li, Yang ; Hu, Chang-Jun: Aesthetic learning in an interactive evolution-
ary art system. In: Applications of Evolutionary Computation. Springer,
2010, S. 301–310

[48] Ligthart, Guido ; Groen, Frans C.: A comparison of different autofocus
algorithms. In: Proc. Sixth International Conference on Pattern Recogni-
tion, 1982, S. 597–600

[49] Machado, Penousal ; Cardoso, Amı́lcar: Computing aesthetics. In:
Advances in Artificial Intelligence. Springer, 1998, S. 219–228

[50] Machado, Penousal ; Cardoso, Amı́lcar: All the truth about NEvAr.
In: Applied Intelligence 16 (2002), Nr. 2, S. 101–118

[51] Machado, Penousal ; Romero, Juan ; Cardoso, Amı́lcar ; Santos,
Antonino: Partially interactive evolutionary artists. In: New Generation
Computing 23 (2005), Nr. 2, S. 143–155

[52] Machado, Penousal ; Romero, Juan ; Santos, Maŕıa Luisa ; Cardoso,
Amı́lcar ; Manaris, Bill: Adaptive critics for evolutionary artists. In:
Applications of evolutionary computing. Springer, 2004, S. 437–446

[53] Mahendran, Aravindh ; Vedaldi, Andrea: Understanding deep image
representations by inverting them. (2014)

[54] Mántaras Badia, Ramon López de: Creatividad computacional. In:
Arbor 189 (2013), Nr. 764, S. a082

[55] Martin, Worthy N. ; Lienig, Jens ; Cohoon, James P.: Island (migra-
tion) models: evolutionary algorithms based on punctuated equilibria. In:
Handbook of evolutionary computation 6 (1997), Nr. 3

[56] Matkovic, Kresimir ; Neumann, László ; Neumann, Attila ; Psik,
Thomas ; Purgathofer, Werner: Global Contrast Factor-a New Ap-
proach to Image Contrast. In: Computational Aesthetics 2005 (2005), S.
159–168

[57] McCormack, Jon: Open problems in evolutionary music and art. In:
Applications of Evolutionary Computing. Springer, 2005, S. 428–436

97

[58] Moles, Abraham: Information theory and esthetic perception. Trans. JE
Cohen. (1968)

[59] Mouret, J-B ; Doncieux, Stéphane: Encouraging behavioral diversity in
evolutionary robotics: An empirical study. In: Evolutionary computation
20 (2012), Nr. 1, S. 91–133

[60] Mouret, Jean-Baptiste: Novelty-based multiobjectivization. In: New
horizons in evolutionary robotics. Springer, 2011, S. 139–154

[61] Nelson, Gary L.: Sonomorphs: An application of genetic algorithms to
the growth and development of musical organisms. In: Proceedings of the
Fourth Biennial Art & Technology Symposium Bd. 155, 1993

[62] Neumann, L ; Sbert, M ; Gooch, B ; Purgathofer, W u. a.: Defin-
ing Computational Aesthetics. In: Computational Aesthetics in Graphics,
Visualization and Imaging (2005), S. 13–18

[63] Nguyen, Anh ; Yosinski, Jason ; Clune, Jeff: Innovation engines: Au-
tomated creativity and improved stochastic optimization via deep learning.
In: Proceedings of the Genetic and Evolutionary Computation Conference,
2015

[64] Nishino, Hiroaki ; Takagi, Hideyuki ; Cho, Sung-Bae ; Utsumiya,
Kouichi: A 3D modeling system for creative design. In: Information Net-
working, 2001. Proceedings. 15th International Conference on IEEE, 2001,
S. 479–486

[65] Nolfi, Stefano ; Floreano, Dario: Evolutionary robotics: The biology,
intelligence, and technology of self-organizing machines. MIT press, 2000

[66] Oudeyer, P-Y ; Kaplan, Frédéric ; Hafner, Verena V.: Intrinsic mo-
tivation systems for autonomous mental development. In: Evolutionary
Computation, IEEE Transactions on 11 (2007), Nr. 2, S. 265–286

[67] Pedregosa, F. ; Varoquaux, G. ; Gramfort, A. ; Michel, V. ; Thiri-
on, B. ; Grisel, O. ; Blondel, M. ; Prettenhofer, P. ; Weiss, R.
; Dubourg, V. ; Vanderplas, J. ; Passos, A. ; Cournapeau, D. ;
Brucher, M. ; Perrot, M. ; Duchesnay, E.: Scikit-learn: Machine
Learning in Python. In: Journal of Machine Learning Research 12 (2011),
S. 2825–2830

[68] Pertuz, Said ; Puig, Domenec ; Garcia, Miguel A.: Analysis of focus
measure operators for shape-from-focus. In: Pattern Recognition 46 (2013),
Nr. 5, S. 1415–1432

[69] Ray, Tapabrata ; Liew, Kim M.: Society and civilization: An optimization
algorithm based on the simulation of social behavior. In: Evolutionary
Computation, IEEE Transactions on 7 (2003), Nr. 4, S. 386–396

[70] Rigau, Jaume ; Feixas, Miquel ; Sbert, Mateu: Informational aesthetics
measures. In: IEEE Computer Graphics and Applications (2008), Nr. 2, S.
24–34

98

[71] Risi, Sebastian ; Cellucci, Daniel ; Lipson, Hod: Ribosomal robots:
Evolved designs inspired by protein folding. In: Proceedings of the 15th
annual conference on Genetic and evolutionary computation ACM, 2013,
S. 263–270

[72] Risi, Sebastian ; Vanderbleek, Sandy D. ; Hughes, Charles E. ; Stan-
ley, Kenneth O.: How novelty search escapes the deceptive trap of learning
to learn. In: Proceedings of the 11th Annual conference on Genetic and evo-
lutionary computation ACM, 2009, S. 153–160

[73] Roberts, Royston M.: Serendipity: Accidental discoveries in science. In:
Serendipity: Accidental Discoveries in Science, by Royston M. Roberts, pp.
288. ISBN 0-471-60203-5. Wiley-VCH, June 1989. 1 (1989)

[74] Romero, Juan ; Machado, Penousal ; Santos, Antonino: On the so-
cialization of evolutionary art. In: Applications of Evolutionary Computing.
Springer, 2009, S. 557–566

[75] Romero, Juan ; Machado, Penousal ; Santos, Antonio ; Cardoso,
Amilcar: On the development of critics in evolutionary computation artists.
In: Applications of Evolutionary Computing. Springer, 2003, S. 559–569

[76] Romero, Juan J. ; Machado, Penousal: The art of artificial evolution:
a handbook on evolutionary art and music. Springer Science & Business
Media, 2007

[77] Rooke, Steven: Eons of genetically evolved algorithmic images. In: Cre-
ative evolutionary systems Morgan Kaufmann Publishers Inc., 2001, S. 339–
365

[78] Ruiz-Mirazo, Kepa ; Umerez, Jon ; Moreno, Alvaro: Enabling condi-
tions for ’open-ended evolution’. In: Biology & Philosophy 23 (2008), Nr.
1, S. 67–85

[79] Santos, Andrés ; Solorzano, C Ortiz d. ; Vaquero, Juan J. ; Pena, JM
; Malpica, Norberto ; Del Pozo, F: Evaluation of autofocus functions in
molecular cytogenetic analysis. In: Journal of microscopy 188 (1997), Nr.
3, S. 264–272

[80] Saunders, Robert ; Gero, John S.: Artificial creativity: A synthetic
approach to the study of creative behaviour. In: Computational and Cog-
nitive Models of Creative Design V, Key Centre of Design Computing and
Cognition, University of Sydney, Sydney (2001), S. 113–139

[81] Scha, Remko ; Bod, Rens: Computationele esthetica. In: Informatie en
Informatiebeleid 11 (1993), Nr. 1, S. 54–63

[82] Schaul, Tom ; Bayer, Justin ; Wierstra, Daan ; Sun, Yi ; Felder,
Martin ; Sehnke, Frank ; Rückstieß, Thomas ; Schmidhuber, Jürgen:
PyBrain. In: Journal of Machine Learning Research 11 (2010), S. 743–746

99

[83] Schaul, Tom ; Sun, Yi ; Wierstra, Daan ; Gomez, Faustino ; Schmid-
huber, Jürgen: Curiosity-driven optimization. In: Evolutionary Compu-
tation (CEC), 2011 IEEE Congress on IEEE, 2011, S. 1343–1349

[84] Schmidhuber, Jürgen: Low-complexity art. In: Leonardo (1997), S. 97–
103

[85] Secretan, Jimmy ; Beato, Nicholas ; D Ambrosio, David B. ; Ro-
driguez, Adelein ; Campbell, Adam ; Stanley, Kenneth O.: Picbreed-
er: evolving pictures collaboratively online. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems ACM, 2008, S. 1759–
1768

[86] Siegelmann, Hava T. ; Sontag, Eduardo D.: On the computational
power of neural nets. In: Journal of computer and system sciences 50
(1995), Nr. 1, S. 132–150

[87] Sims, Karl: Artificial evolution for computer graphics. ACM, 1991

[88] Smith, Joshua R.: Designing Biomorphs with an Interactive Genetic Al-
gorithm. In: ICGA, 1991, S. 535–538

[89] Stanley, Kenneth O.: Exploiting regularity without development. In:
Proceedings of the AAAI Fall Symposium on Developmental Systems AAAI
Press Menlo Park, CA, 2006, S. 37

[90] Stanley, Kenneth O.: Compositional pattern producing networks: A
novel abstraction of development. In: Genetic programming and evolvable
machines 8 (2007), Nr. 2, S. 131–162

[91] Stanley, Kenneth O. ; D’Ambrosio, David B. ; Gauci, Jason: A
hypercube-based encoding for evolving large-scale neural networks. In: Ar-
tificial life 15 (2009), Nr. 2, S. 185–212

[92] Stanley, Kenneth O. ; Lehman, Joel: The Art of Breeding Art. In: Why
Greatness Cannot Be Planned. Springer, 2015, S. 21–28

[93] Stanley, Kenneth O. ; Lehman, Joel: Why Greatness Cannot Be
Planned. (2015)

[94] Stanley, Kenneth O. ; Miikkulainen, Risto: Evolving neural networks
through augmenting topologies. In: Evolutionary computation 10 (2002),
Nr. 2, S. 99–127

[95] Stanley, Kenneth O. ; Miikkulainen, Risto: Competitive coevolution
through evolutionary complexification. In: J. Artif. Intell. Res.(JAIR) 21
(2004), S. 63–100

[96] Sun, Yu ; Duthaler, Stefan ; Nelson, Bradley J.: Autofocusing in com-
puter microscopy: selecting the optimal focus algorithm. In: Microscopy
research and technique 65 (2004), Nr. 3, S. 139–149

100

[97] Szegedy, Christian ; Liu, Wei ; Jia, Yangqing ; Sermanet, Pierre ;
Reed, Scott ; Anguelov, Dragomir ; Erhan, Dumitru ; Vanhoucke,
Vincent ; Rabinovich, Andrew: Going deeper with convolutions. (2014)

[98] Takagi, Hideyuki: Interactive evolutionary computation: Fusion of the
capabilities of EC optimization and human evaluation. In: Proceedings of
the IEEE 89 (2001), Nr. 9, S. 1275–1296

[99] Thomsen, René ; Rickers, Peter ; Krink, Thiemo: A religion-based
spatial model for evolutionary algorithms. In: Parallel Problem Solving
from Nature PPSN VI Springer, 2000, S. 817–826

[100] Todd, Stephen ; Latham, William: Evolutionary art and computers.
(1994)

[101] Unemi, Tatsuo: SBART 2.4: breeding 2D CG images and movies and
creating a type of collage. In: Knowledge-Based Intelligent Information
Engineering Systems, 1999. Third International Conference IEEE, 1999, S.
288–291

[102] Ursem, Rasmus K.: Multinational evolutionary algorithms. In: Evolu-
tionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on
Bd. 3 IEEE, 1999

[103] Wolpert, David H. ; Macready, William G.: No free lunch theorems
for optimization. In: Evolutionary Computation, IEEE Transactions on 1
(1997), Nr. 1, S. 67–82

[104] Woolley, Brian G. ; Stanley, Kenneth O.: On the deleterious effects
of a priori objectives on evolution and representation. In: Proceedings of
the 13th annual conference on Genetic and evolutionary computation ACM,
2011, S. 957–964

[105] Woolley, Brian G. ; Stanley, Kenneth O.: A novel human-computer
collaboration: combining novelty search with interactive evolution. In: Pro-
ceedings of the 2014 conference on Genetic and evolutionary computation
ACM, 2014, S. 233–240

[106] Yosinski, Jason ; Clune, Jeff ; Nguyen, Anh ; Fuchs, Thomas ; Lipson,
Hod: Understanding Neural Networks Through Deep Visualization. (2015)

[107] Zeiler, Matthew D. ; Fergus, Rob: Visualizing and understanding con-
volutional networks. In: Computer Vision–ECCV 2014. Springer, 2014, S.
818–833

101

	Introduction
	Background and related work
	Artificial neural network
	Compositional pattern producing network

	Evolutionary computation
	Evolutionary algorithm
	NeuroEvolution of augmenting topologies
	Interactive evolutionary computation
	Evolutionary art
	Image representation

	Computational aesthetics
	Machado & Cardoso
	Information entropy
	Benford law
	Global contrast factor
	Relaxed symmetry

	Focus measures
	Tenengrad
	Normalized variance

	Picbreeder
	Novelty search
	Computational creativity

	Inspiration-triggered search
	Framework of inspiration-triggered search
	Inspiration
	General idea
	Algorithm
	Properties

	Description-based ITS
	General idea
	Definition

	Multi-view ITS
	General idea
	Properties
	Definition
	Objective function for optimization technique
	Description metric by coverage and extension
	Inspire method
	Simplify method

	Description metric for images
	Extension
	Coverage
	Summary

	Experimental setting
	Image representation
	Underlying optimization technique
	Features
	Global contrast factor
	Relaxed symmetry
	Normalized variance
	Tenengrad
	Choppiness
	Image complexity by JPEG compression
	Maximum of absolute Laplacian
	Feature as penalty

	Inspiration-triggered search

	Evaluation
	Methods for comparing complexities
	Complexity test by optimization
	Complexity classifier

	Visualization of ITS
	Selected runs
	Increase of complexity after diversification phase
	No change of complexity after diversification phase
	Increase of complexity during diversification phase
	Importance of objective function to complexity
	Inability to leave diversification phase

	Comparison
	Normalized Variance
	Relaxed symmetry
	Global contrast factor
	Tenengrad
	NV+RS
	NV+RS+T
	NV+RS+GCF
	NV+RS+GCF+T

	Summary

	Conclusion
	Bibliography

